Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Foam for Environmental Remediation: Generation and Blocking Effect

  • 347 Accesses

  • 3 Citations


Foam injection is widely used in petroleum industry for enhanced oil recovery, but has received limited attention for the application of environmental remediation at the field scale. This study analyses the use of foam as a blocking agent, i.e. to confine a source zone of contaminant in groundwater. Laboratory experiments in 1D porous media with a commercially available biodegradable surfactant performed on columns using pre-generated foam show that the foam reduces the relative water permeability \(k_{\mathrm {rw}}\) by a factor of 100–1000. \(k_{\mathrm {rw}}\) was measured right after foam placement by injecting only water (drainage test) and corresponding to the relative permeability of water in presence of foam. A comparison to a theoretical two-phase flow in porous medium shows that the Van Genuchten equation can be used to estimate the \(k_{\mathrm {rw}}\) value. In the field, experiments done on two different porous media and using three different injection techniques (co-injection, surfactant alternating gas, pre-generation) show a clear confining ability of the produced foam. A \(k_{\mathrm {rw}}\) reduction by a factor of 1000 is observed very close to the well and close to 100 at 1 m of this well. These values were obtained with a much weaker foam than the laboratory one in order to allow the injection at shallow depth environmental compatible ssure (\(\le \) 4 bar). The reduction in water relative permeability can occur in the presence of a foam that does not cause an extreme reduction of the mobility, indicating that this reduction does not depend on resistance factor (RF) values. There is potential for improvement of the foam as it loses its efficiency with increasing distance from the injection well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Atteia, O., Estrada, E.D.C., Bertin, H.: Soil flushing: a review of the origin of efficiency variability. Rev. Environ. Sci. Bio/Technol. 12(4), 379–389 (2013)

  2. Bernard, G.G., Jacobs, W., et al.: Effect of foam on trapped gas saturation and on permeability of porous media to water. Soc. Petrol. Eng. J. 5(04), 295–300 (1965)

  3. Bertin, H., Apaydin, O., Castanier, L., Kovscek, A., et al.: Foam flow in heterogeneous porous media: effect of cross flow. SPE J. 4(02), 75–82 (1999)

  4. Bertin, H., Estrada, E.D.C., Atteia, O.: Foam placement for soil remediation. Environ. Chem. 14, 338–343 (2017)

  5. Bikerman, J.J.: Foams, Applied Physics and Engineering, vol. 10, 1st edn. Springer, Berlin (1973). https://doi.org/10.1007/978-3-642-86734-7

  6. Bouwer, H.: The bouwer and rice slug testan update. Groundwater 27(3), 304–309 (1989)

  7. Bouwer, H., Rice, R.: A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour. Res. 12(3), 423–428 (1976)

  8. Chambers, K.T., Radke, C.: Capillary phenomena in foam flow through porous media. In: Morrow, N.R. (ed.) Interfacial Phenomena in Oil Recovery, pp. 191–255. Marcel Dekker, New York (1990)

  9. Chou, S., et al.: Conditions for generating foam in porous media. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1991)

  10. Chowdiah, P., Misra II, B.J.K., Srivastava, V., Hayes, T.: Foam propagation through soils for enhanced in-situ remediation. J. Hazard. Mater. 62(3), 265–280 (1998). https://doi.org/10.1016/S0304-3894(98)00191-5

  11. Del Campo Estrada, E., Bertin, H., Atteia, O.: Experimental study of foam flow in sand columns: surfactant choice and resistance factor measurement. Transp. Porous Media 108(2), 335–354 (2015). https://doi.org/10.1007/s11242-015-0479-8

  12. Edwards, D.A., Liu, Z., Luthy, R.G.: Surfactant solubilization of organic compounds in soil/aqueous systems. J. Environ. Eng. 120(1), 5–22 (1994). https://doi.org/10.1061/(ASCE)0733-9372(1994)120:1(5)

  13. Eftekhari, A.A., Farajzadeh, R.: Effect of foam on liquid phase mobility in porous media. Sci. Rep. 7, 43870 (2017)

  14. Estrada, E.D.C.: Ecoulements de mousse pour la dépollution d’aquifères. Ph.D. thesis, Université de Bordeaux (2014)

  15. Farajzadeh, R., Muruganathan, R., Rossen, W., Krastev, R.: Effect of gas type on foam film permeability and its implications for foam flow in porous media. Adv. Colloid Interface Sci. 168(12), 71–78 (2011). https://doi.org/10.1016/j.cis.2011.03.005. http://www.sciencedirect.com/science/article/pii/S0001868611000534

  16. Friedmann, F., Jensen, J., et al.: Some parameters influencing the formation and propagation of foams in porous media. In: SPE California Regional Meeting. Society of Petroleum Engineers (1986)

  17. Gauglitz, P.A., Friedmann, F., Kam, S.I., Rossen, W.R.: Foam generation in homogeneous porous media. Chem. Eng. Sci. 57(19), 4037–4052 (2002)

  18. Guyonnet, D., Mishra, S., McCord, J.: Evaluating the volume of porous medium investigated during slug tests. Groundwater 31(4), 627–633 (1993)

  19. Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G.: Modflow-2000, the U.S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-file Report. U.S. Geological Survey (92), 134 (2000)

  20. Hernando, L., Bertin, H., Omari, A., Dupuis, G., Zaitoun, A., et al.: Polymer-enhanced foams for water profile control. In: SPE Improved Oil Recovery Conference. Society of Petroleum Engineers (2016)

  21. Hirasaki, G., et al.: Supplement to SPE 19505, the steam-foam process–review of steam-foam process mechanisms (1989)

  22. Hirasaki, G.J., Miller, C.A., Szafranski, R., Lawson, J.B., Meinardus, M.J., Londergan, J.T., Jackson, R.E., Pope, G.A., Wade, W.H.: Field demonstration of the surfactant/foam process for aquifer remediation. In: SPE Annual Technical Conference and Exhibition (SPE 39292) (1997)

  23. Khatib, Z.I., Hirasaki, G.J., Falls, A.H.: Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE Reserv. Eng. 3, 919–926 (1988)

  24. Kovscek, A., Bertin, H.: Foam mobility in heterogeneous porous media. Transp. Porous Media 52(1), 17–35 (2003)

  25. Longpré-Girard, M., Martel, R., Robert, T., Lefebvre, R., Lauzon, J.M.: 2d sandbox experiments of surfactant foams for mobility control and enhanced lnapl recovery in layered soils. J. Contam. Hydrol. 193, 63–73 (2016)

  26. Ma, K., Liontas, R., Conn, C.A., Hirasaki, G.J., Biswal, S.L.: Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter 8(41), 10669–10675 (2012)

  27. Maire, J., Coyer, A., Fatin-Rouge, N.: Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs. J. Hazard. Mater. 299, 630–638 (2015). https://doi.org/10.1016/j.jhazmat.2015.07.071. http://www.sciencedirect.com/science/article/pii/S0304389415006081

  28. Maire, J., Fatin-Rouge, N.: Surfactant foam flushing for in situ removal of dnapls in shallow soils. J. Hazard. Mater. 321, 247–255 (2017)

  29. Montzka, C., Moradkhani, H., Weihermüller, L., Franssen, H.J.H., Canty, M., Vereecken, H.: Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. J. Hydrol. 399(3), 410–421 (2011)

  30. Mulligan, C.N., Eftekhari, F.: Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 70(3), 269–279 (2003)

  31. Pang, Z.X.: The blocking ability and flowing characteristics of steady foams in porous media. Transp. Porous Media 85(1), 299–316 (2010)

  32. Pugh, R.: Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci. 64, 67–142 (1996). https://doi.org/10.1016/0001-8686(95)00280-4

  33. Rosen, M.J.: Surfactants and Interfacial Phenomena, 4th edn. Wiley, New York (2012). https://doi.org/10.1002/9781118228920

  34. Rossen, W.R.: Foams in enhanced oil recovery. Surfactant Sci. Ser. 57, 413–464 (1996)

  35. Rovey, C.W., Cherkauer, D.S.: Scale dependency of hydraulic conductivity measurements. Groundwater 33(5), 769–780 (1995)

  36. Schramm, L.L.: Foams: Fundamentals and Applications in the Petroleum Industry. No. 242 in Advances in Chemistry Series. American Chemical Society, Washington, DC (1994). http://pubs.acs.org/doi/abs/10.1021/ba-1994-0242.fw001

  37. Shi, J., Rossen, W.: Simulation of gravity override in foam processes in porous media. SPE Reserv. Eval. Eng. 1(2), 148–154 (1998)

  38. Tang, G.Q., Kovscek, A.: Trapped gas fraction during steady-state foam flow. Transp. Porous Media 65(2), 287–307 (2006)

  39. Van Dam, J., Stricker, J., Droogers, P.: From one-step to multi-step. Determination of soil hydraulic functions by outflow experiments. Technical reportm Landbouwuniversiteit Wageningen (1990)

  40. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

  41. Wang, S., Mulligan, C.N.: An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57(9), 1079–1089 (2004). https://doi.org/10.1016/j.chemosphere.2004.08.019. http://www.sciencedirect.com/science/article/pii/S0045653504006964

  42. Wiedemeier, T.H.: Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. Wiley, New York (1999)

Download references

Author information

Correspondence to Clément Portois.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1559 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Portois, C., Boeije, C.S., Bertin, H.J. et al. Foam for Environmental Remediation: Generation and Blocking Effect. Transp Porous Med 124, 787–801 (2018). https://doi.org/10.1007/s11242-018-1097-z

Download citation


  • Foam
  • Multiscale
  • Porous media
  • Relative permeability
  • Environmental remediation