Transport in Porous Media

, Volume 124, Issue 3, pp 787–801 | Cite as

Foam for Environmental Remediation: Generation and Blocking Effect

  • Clément PortoisEmail author
  • Christian S. Boeije
  • Henri J. Bertin
  • Olivier Atteia


Foam injection is widely used in petroleum industry for enhanced oil recovery, but has received limited attention for the application of environmental remediation at the field scale. This study analyses the use of foam as a blocking agent, i.e. to confine a source zone of contaminant in groundwater. Laboratory experiments in 1D porous media with a commercially available biodegradable surfactant performed on columns using pre-generated foam show that the foam reduces the relative water permeability \(k_{\mathrm {rw}}\) by a factor of 100–1000. \(k_{\mathrm {rw}}\) was measured right after foam placement by injecting only water (drainage test) and corresponding to the relative permeability of water in presence of foam. A comparison to a theoretical two-phase flow in porous medium shows that the Van Genuchten equation can be used to estimate the \(k_{\mathrm {rw}}\) value. In the field, experiments done on two different porous media and using three different injection techniques (co-injection, surfactant alternating gas, pre-generation) show a clear confining ability of the produced foam. A \(k_{\mathrm {rw}}\) reduction by a factor of 1000 is observed very close to the well and close to 100 at 1 m of this well. These values were obtained with a much weaker foam than the laboratory one in order to allow the injection at shallow depth environmental compatible ssure (\(\le \) 4 bar). The reduction in water relative permeability can occur in the presence of a foam that does not cause an extreme reduction of the mobility, indicating that this reduction does not depend on resistance factor (RF) values. There is potential for improvement of the foam as it loses its efficiency with increasing distance from the injection well.


Foam Multiscale Porous media Relative permeability Environmental remediation 

Supplementary material

11242_2018_1097_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (docx 1559 KB)


  1. Atteia, O., Estrada, E.D.C., Bertin, H.: Soil flushing: a review of the origin of efficiency variability. Rev. Environ. Sci. Bio/Technol. 12(4), 379–389 (2013)CrossRefGoogle Scholar
  2. Bernard, G.G., Jacobs, W., et al.: Effect of foam on trapped gas saturation and on permeability of porous media to water. Soc. Petrol. Eng. J. 5(04), 295–300 (1965)CrossRefGoogle Scholar
  3. Bertin, H., Apaydin, O., Castanier, L., Kovscek, A., et al.: Foam flow in heterogeneous porous media: effect of cross flow. SPE J. 4(02), 75–82 (1999)CrossRefGoogle Scholar
  4. Bertin, H., Estrada, E.D.C., Atteia, O.: Foam placement for soil remediation. Environ. Chem. 14, 338–343 (2017)CrossRefGoogle Scholar
  5. Bikerman, J.J.: Foams, Applied Physics and Engineering, vol. 10, 1st edn. Springer, Berlin (1973). Google Scholar
  6. Bouwer, H.: The bouwer and rice slug testan update. Groundwater 27(3), 304–309 (1989)CrossRefGoogle Scholar
  7. Bouwer, H., Rice, R.: A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour. Res. 12(3), 423–428 (1976)CrossRefGoogle Scholar
  8. Chambers, K.T., Radke, C.: Capillary phenomena in foam flow through porous media. In: Morrow, N.R. (ed.) Interfacial Phenomena in Oil Recovery, pp. 191–255. Marcel Dekker, New York (1990)Google Scholar
  9. Chou, S., et al.: Conditions for generating foam in porous media. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1991)Google Scholar
  10. Chowdiah, P., Misra II, B.J.K., Srivastava, V., Hayes, T.: Foam propagation through soils for enhanced in-situ remediation. J. Hazard. Mater. 62(3), 265–280 (1998). CrossRefGoogle Scholar
  11. Del Campo Estrada, E., Bertin, H., Atteia, O.: Experimental study of foam flow in sand columns: surfactant choice and resistance factor measurement. Transp. Porous Media 108(2), 335–354 (2015). CrossRefGoogle Scholar
  12. Edwards, D.A., Liu, Z., Luthy, R.G.: Surfactant solubilization of organic compounds in soil/aqueous systems. J. Environ. Eng. 120(1), 5–22 (1994). CrossRefGoogle Scholar
  13. Eftekhari, A.A., Farajzadeh, R.: Effect of foam on liquid phase mobility in porous media. Sci. Rep. 7, 43870 (2017)CrossRefGoogle Scholar
  14. Estrada, E.D.C.: Ecoulements de mousse pour la dépollution d’aquifères. Ph.D. thesis, Université de Bordeaux (2014)Google Scholar
  15. Farajzadeh, R., Muruganathan, R., Rossen, W., Krastev, R.: Effect of gas type on foam film permeability and its implications for foam flow in porous media. Adv. Colloid Interface Sci. 168(12), 71–78 (2011).
  16. Friedmann, F., Jensen, J., et al.: Some parameters influencing the formation and propagation of foams in porous media. In: SPE California Regional Meeting. Society of Petroleum Engineers (1986)Google Scholar
  17. Gauglitz, P.A., Friedmann, F., Kam, S.I., Rossen, W.R.: Foam generation in homogeneous porous media. Chem. Eng. Sci. 57(19), 4037–4052 (2002)CrossRefGoogle Scholar
  18. Guyonnet, D., Mishra, S., McCord, J.: Evaluating the volume of porous medium investigated during slug tests. Groundwater 31(4), 627–633 (1993)CrossRefGoogle Scholar
  19. Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G.: Modflow-2000, the U.S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-file Report. U.S. Geological Survey (92), 134 (2000)Google Scholar
  20. Hernando, L., Bertin, H., Omari, A., Dupuis, G., Zaitoun, A., et al.: Polymer-enhanced foams for water profile control. In: SPE Improved Oil Recovery Conference. Society of Petroleum Engineers (2016)Google Scholar
  21. Hirasaki, G., et al.: Supplement to SPE 19505, the steam-foam process–review of steam-foam process mechanisms (1989)Google Scholar
  22. Hirasaki, G.J., Miller, C.A., Szafranski, R., Lawson, J.B., Meinardus, M.J., Londergan, J.T., Jackson, R.E., Pope, G.A., Wade, W.H.: Field demonstration of the surfactant/foam process for aquifer remediation. In: SPE Annual Technical Conference and Exhibition (SPE 39292) (1997)Google Scholar
  23. Khatib, Z.I., Hirasaki, G.J., Falls, A.H.: Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE Reserv. Eng. 3, 919–926 (1988)CrossRefGoogle Scholar
  24. Kovscek, A., Bertin, H.: Foam mobility in heterogeneous porous media. Transp. Porous Media 52(1), 17–35 (2003)CrossRefGoogle Scholar
  25. Longpré-Girard, M., Martel, R., Robert, T., Lefebvre, R., Lauzon, J.M.: 2d sandbox experiments of surfactant foams for mobility control and enhanced lnapl recovery in layered soils. J. Contam. Hydrol. 193, 63–73 (2016)CrossRefGoogle Scholar
  26. Ma, K., Liontas, R., Conn, C.A., Hirasaki, G.J., Biswal, S.L.: Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter 8(41), 10669–10675 (2012)CrossRefGoogle Scholar
  27. Maire, J., Coyer, A., Fatin-Rouge, N.: Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs. J. Hazard. Mater. 299, 630–638 (2015).
  28. Maire, J., Fatin-Rouge, N.: Surfactant foam flushing for in situ removal of dnapls in shallow soils. J. Hazard. Mater. 321, 247–255 (2017)CrossRefGoogle Scholar
  29. Montzka, C., Moradkhani, H., Weihermüller, L., Franssen, H.J.H., Canty, M., Vereecken, H.: Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. J. Hydrol. 399(3), 410–421 (2011)CrossRefGoogle Scholar
  30. Mulligan, C.N., Eftekhari, F.: Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 70(3), 269–279 (2003)CrossRefGoogle Scholar
  31. Pang, Z.X.: The blocking ability and flowing characteristics of steady foams in porous media. Transp. Porous Media 85(1), 299–316 (2010)CrossRefGoogle Scholar
  32. Pugh, R.: Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci. 64, 67–142 (1996). CrossRefGoogle Scholar
  33. Rosen, M.J.: Surfactants and Interfacial Phenomena, 4th edn. Wiley, New York (2012). CrossRefGoogle Scholar
  34. Rossen, W.R.: Foams in enhanced oil recovery. Surfactant Sci. Ser. 57, 413–464 (1996)Google Scholar
  35. Rovey, C.W., Cherkauer, D.S.: Scale dependency of hydraulic conductivity measurements. Groundwater 33(5), 769–780 (1995)CrossRefGoogle Scholar
  36. Schramm, L.L.: Foams: Fundamentals and Applications in the Petroleum Industry. No. 242 in Advances in Chemistry Series. American Chemical Society, Washington, DC (1994).
  37. Shi, J., Rossen, W.: Simulation of gravity override in foam processes in porous media. SPE Reserv. Eval. Eng. 1(2), 148–154 (1998)CrossRefGoogle Scholar
  38. Tang, G.Q., Kovscek, A.: Trapped gas fraction during steady-state foam flow. Transp. Porous Media 65(2), 287–307 (2006)CrossRefGoogle Scholar
  39. Van Dam, J., Stricker, J., Droogers, P.: From one-step to multi-step. Determination of soil hydraulic functions by outflow experiments. Technical reportm Landbouwuniversiteit Wageningen (1990)Google Scholar
  40. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRefGoogle Scholar
  41. Wang, S., Mulligan, C.N.: An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57(9), 1079–1089 (2004).
  42. Wiedemeier, T.H.: Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. Wiley, New York (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Clément Portois
    • 1
    Email author
  • Christian S. Boeije
    • 1
  • Henri J. Bertin
    • 2
  • Olivier Atteia
    • 1
  1. 1.ENSEGID EA 4592PessacFrance
  2. 2.I2M, UMR CNRS 5295, Université de BordeauxTalenceFrance

Personalised recommendations