Advertisement

Transport in Porous Media

, Volume 124, Issue 2, pp 655–679 | Cite as

Exact Solution for Coupled Reactive Flow and Dissolution with Porosity Changes

  • A. Altree-Williams
  • J. Brugger
  • A. Pring
  • P. BedrikovetskyEmail author
Article

Abstract

We derive exact solution for mineral-dissolution reactive flows in porous media with porosity variations. These conditions are relevant to injection of incompatible liquids into aquifers for disposal or waste storage, rock alteration during well stimulation by acidising or invasion of corrosive, far-from-equilibrium fluids related to ore deposit formation and heap or in situ leaching in mineral processing. Despite the porosity change making the one-dimensional flow equations nonlinear, the problem allows for exact integration, and a novel analytical model is developed. It allows presenting typical curves for breakthrough concentrations and porosity evolution. The exact solution provides a tool for predictive testing of reactive models that account for porosity creation. The analytical model derived exhibits high agreement with laboratory data, which validate the model.

Keywords

Reactive flow Mineral dissolution Porous media Porosity alteration Mathematical model 

List of symbols

Latin

c

Concentration of mineral in solvent solution

ce

Equilibrium concentration

D

Axial dispersion (L2 T−1)

Ec

Effluent concentration normalized least squares deviation

Ef

Normalized least squares deviation

EΦ

Average porosity normalized least squares deviation

L

Core length (L)

t

Time (T)

T

Dimensionless time, PVI

Tc (X)

Boundary between zones I and II, PVI

Tf (0)

Time of full mineral dissolution at inlet, PVI

Tf (1)

Time of dissolution front breakthrough, PVI

U

Darcy velocity (L T−1)

V

Reciprocal to dissolution front speed

x

Axial coordinate (L)

X

Dimensionless axial coordinate

Greek

αL

Dispersivity (L)

ε

Kinetics number

τ

Kinetic delay time (T)

ϕ

Porosity

Φ

Normalised porosity

Subscripts

0

Initial value

ex

Experimental values

ss

Steady-state

Notes

Acknowledgements

The authors are grateful to Eng. T. Russell and A/Prof. Yung Ngothai (The University of Adelaide) for fruitful and encouraging discussions. Many thanks are due to David H. Levin (Murphy, NC, USA) who provided professional English-language editing of this article. The authors thank Australian Research Council for grants DP140102765 and LP150100626. Significant improvement in the quality of the text is due to thoughtful feedback of all seven reviewers.

References

  1. Alexeev, A., Shapiro, A., Thomsen, K.: Modeling of dissolution effects on waterflooding. Transp. Porous Media 106(3), 545–562 (2015)CrossRefGoogle Scholar
  2. Altree-Williams, A., Pring, A., Ngothai, Y., Brugger, J.L.: Textural and compositional complexities resulting from coupled dissolution–reprecipitation reactions in geomaterials. Earth Sci. Rev. 150, 628–651 (2015)CrossRefGoogle Scholar
  3. Altree-Williams, A., Pring, A., Ngothai, Y., Brugger, J.L.: The carbonatation of anhydrite: kinetics and reaction pathways. ACS Earth Space Chem. 1(2), 89–100 (2017)CrossRefGoogle Scholar
  4. Alvarez, A., Bedrikovetsky, P., Hime, G., Marchesin, A., Marchesin, D., Rodrigues, J.: A fast inverse solver for the filtration function for flow of water with particles in porous media. Inverse Probl. 22(1), 69 (2006)CrossRefGoogle Scholar
  5. Alvarez, A.C., Hime, G., Marchesin, D., Bedrikovetsky, P.G.: The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media. Transp. Porous Media 70(1), 43–62 (2007)CrossRefGoogle Scholar
  6. Battiato, I., Tartakovsky, D.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contam. Hydrol. 120, 18–26 (2011)CrossRefGoogle Scholar
  7. Bedrikovetsky, P.: Mathematical Theory of Oil and Gas Recovery. Petroleum Engineering and Development Studies, vol. 4. Springer, Dordrecht (2013)Google Scholar
  8. Bedrikovetsky, P., You, Z., Badalyan, A., Osipov, Y., Kuzmina, L.: Analytical model for straining-dominant large-retention depth filtration. Chem. Eng. J. 330, 1148–1159 (2017)CrossRefGoogle Scholar
  9. Bethke, C.: Geochemical Reaction Modeling: Concepts and Applications. Oxford University Press on Demand, (1996)Google Scholar
  10. Boso, F., Broyda, S., Tartakovsky, D.: Cumulative distribution function solutions of advection–reaction equations with uncertain parameters. Proc. R. Soc. A 470, 2166 (2014)CrossRefGoogle Scholar
  11. Chalk, P., Gooding, N., Hutten, S., You, Z., Bedrikovetsky, P.: Pore size distribution from challenge coreflood testing by colloidal flow. Chem. Eng. Res. Des. 90(1), 63–77 (2012).  https://doi.org/10.1016/j.cherd.2011.08.018 CrossRefGoogle Scholar
  12. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)CrossRefGoogle Scholar
  13. Colón, C.F.J., Oelkers, E.H., Schott, J.: Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area. Geochim. Cosmochim. Acta 68(4), 805–817 (2004)CrossRefGoogle Scholar
  14. Courant, R., Hilbert, D.: Partial Differential Equations, Reprint of the 1962 Original. Methods of Mathematical Physics, vol. 2. Wiley, New York (1989)Google Scholar
  15. Datta-Gupta, A., King, M.J.: Streamline Simulation: Theory and Practice, vol. 11. Society of Petroleum Engineers, Richardson (2007)Google Scholar
  16. Fogler, H.S.: Elements of Chemical Reaction Engineering, Prentice Hall PTR International Series in the Physical and Chemical Engineering Sciences, 4th edn. Prentice Hall PTR, Upper Sadle River (2006)Google Scholar
  17. Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002).  https://doi.org/10.1017/s0022112002007735 CrossRefGoogle Scholar
  18. Hayek, M.: Exact solutions for one-dimensional transient gas flow in porous media with gravity and Klinkenberg effects. Transp. Porous Media 107(2), 403–417 (2015)CrossRefGoogle Scholar
  19. Hayek, M., Kosakowski, G., Jakob, A., Churakov, S.V.: A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes. Water Resour. Res. 48(3), W03525 (2012)CrossRefGoogle Scholar
  20. Jensen, J.L., Lake, L.W., Corbett, P., Goggin, D.J.: Statistics for Petroleum eEngineers and gGeoscientists, vol. 2. Gulf Professional Publishing, ‎Houston (2000)Google Scholar
  21. Jonas, L., John, T., King, H.E., Geisler, T., Putnis, A.: The role of grain boundaries and transient porosity in rocks as fluid pathways for reaction front propagation. Earth Planet. Sci. Lett. 386, 64–74 (2014).  https://doi.org/10.1016/j.epsl.2013.10.050 CrossRefGoogle Scholar
  22. Knabner, P., van Duijn, C.J., Hengst, S.: An analysis of crystal dissolution fronts in flows through porous media. Part 1: compatible boundary conditions. Adv. Water Resour. 18(3), 171–185 (1995)CrossRefGoogle Scholar
  23. Lasaga, A.C.: Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton (1998)CrossRefGoogle Scholar
  24. Lasaga, A.C., Rye, D.M.: Fluid flow and chemical reaction kinetics in metamorphic systems. Am. J. Sci. 293(5), 361–404 (1993)CrossRefGoogle Scholar
  25. Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall International Series in the Physical and Chemical Engineering Sciences. Prentice-Hall, Inc, ‎Upper Saddle River (1962)Google Scholar
  26. Lichtner, P.C.: The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochim. Cosmochim. Acta 52(1), 143–165 (1988)CrossRefGoogle Scholar
  27. Lichtner, P.C., Tartakovsky, D.: Stochastic analysis of effective rate constant for heterogeneous reactions. Stoch. Environ. Res. Risk Assess. 17(6), 419–429 (2003)CrossRefGoogle Scholar
  28. Luquot, L., Rodriguez, O., Gouze, P.: Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes. Transp. Porous Media 101(3), 507–532 (2014)CrossRefGoogle Scholar
  29. Menke, H., Andrew, M., Blunt, M., Bijeljic, B.: Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography—effect of initial pore structure and flow conditions. Chem. Geol. 428, 15–26 (2016)CrossRefGoogle Scholar
  30. Menke, H., Bijeljic, B., Blunt, M.: Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: effect of initial pore structure and initial brine pH. Geochim. Cosmochim. Acta 204, 267–285 (2017)CrossRefGoogle Scholar
  31. Menke, H.P., Bijeljic, B., Andrew, M.G., Blunt, M.J.: Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. Environ. Sci. Technol. 49(7), 4407–4414 (2015)CrossRefGoogle Scholar
  32. Nikolaevskij, V.N.: Mechanics of Porous and Fractured Media. Series in Theoretical and Applied Mechanics, vol. 8. World Scientific, Singapore (1990)CrossRefGoogle Scholar
  33. Noiriel, C., Gouze, P., Bernard, D.: Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophys. Res. Lett. 31, 24 (2004)CrossRefGoogle Scholar
  34. Parkhurst, D.L., Appelo, C.: Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, vol. book 6. Techniques and Methods. U.S. Geological Survey, Virginia, United States (2013)Google Scholar
  35. Polyanin, A.: Exact solutions of nonlinear sets of equations of the theory of heat and mass transfer in reactive media and mathematical biology. Theor. Found. Chem. Eng. 38(6), 622–635 (2004)CrossRefGoogle Scholar
  36. Polyanin, A.D., Dilman, V.V.: Methods of Modeling Equations and Analogies in Chemical Engineering. CRC Press, Boca Raton (1994)Google Scholar
  37. Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  38. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton (2012)Google Scholar
  39. Putnis, A.: Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral. Mag. 66(5), 689–708 (2002).  https://doi.org/10.1180/0026461026650056 CrossRefGoogle Scholar
  40. Putnis, A.: Mineral replacement reactions. Rev. Mineral. Geochem. 70(1), 87–124 (2009).  https://doi.org/10.2138/rmg.2009.70.3 CrossRefGoogle Scholar
  41. Putnis, A.: Transient porosity resulting from fluid–mineral interaction and its consequences. Rev. Mineral. Geochem. 80(1), 1–23 (2015).  https://doi.org/10.2138/rmg.2015.80.01 CrossRefGoogle Scholar
  42. Shampine, L.: Solving hyperbolic PDEs in MATLAB. Appl. Numer. Anal. Comput. Math. 2(3), 346–358 (2005a)CrossRefGoogle Scholar
  43. Shampine, L.F.: Two-step Lax-Friedrichs method. Appl. Math. Lett. 18(10), 1134–1136 (2005b)CrossRefGoogle Scholar
  44. Smirnov, A.S., Fedorov, K.M., Shevelev, A.P.: Modeling the acidizing of a carbonate formation. Fluid Dyn. 45(5), 779–786 (2010).  https://doi.org/10.1134/s0015462810050108 CrossRefGoogle Scholar
  45. Tartakovsky, A.M., Redden, G., Lichtner, P.C., Scheibe, T.D., Meakin, P.: Mixing-induced precipitation: experimental study and multiscale numerical analysis. Water Resour. Res. 44(6), W06S04 (2008)CrossRefGoogle Scholar
  46. Van Duijn, C., Knabner, P., Schotting, R.: An analysis of crystal dissolution fronts in flows through porous media part 2: incompatible boundary conditions. Adv. Water Resour. 22(1), 1–16 (1998)CrossRefGoogle Scholar
  47. Xia, F., Brugger, J., Chen, G., Ngothai, Y., O’Neill, B., Putnis, A., Pring, A.: Mechanism and kinetics of pseudomorphic mineral replacement reactions: a case study of the replacement of pentlandite by violarite. Geochim. Cosmochim. Acta 73(7), 1945–1969 (2009).  https://doi.org/10.1016/j.gca.2009.01.007 CrossRefGoogle Scholar
  48. You, Z., Osipov, Y., Bedrikovetsky, P., Kuzmina, L.: Asymptotic model for deep bed filtration. Chem. Eng. J. 258, 374–385 (2014).  https://doi.org/10.1016/j.cej.2014.07.05 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. Altree-Williams
    • 1
  • J. Brugger
    • 2
  • A. Pring
    • 3
  • P. Bedrikovetsky
    • 1
    Email author
  1. 1.University of AdelaideAdelaideAustralia
  2. 2.Monash UniversityMelbourneAustralia
  3. 3.Flinders UniversityAdelaideAustralia

Personalised recommendations