Advertisement

Transport in Porous Media

, Volume 124, Issue 1, pp 159–182 | Cite as

Coupled Processes Modeling in Rock Salt and Crushed Salt Including Halite Solubility Constraints: Application to Disposal of Heat-Generating Nuclear Waste

  • Laura Blanco-Martín
  • Jonny Rutqvist
  • Alfredo Battistelli
  • Jens T. Birkholzer
Article
  • 108 Downloads

Abstract

This paper presents numerical modeling of coupled thermal, hydraulic and mechanical processes in rock salt and crushed salt considering halite solubility constraints. The TOUGH-FLAC simulator is used, with a recently enhanced Equation-Of-State module that includes the thermodynamic properties of aqueous fluids of variable salinity. Laboratory and field scale tests performed on rock salt and crushed salt under temperature gradients are modeled first to evaluate the capabilities of the simulator to reproduce important features, such as porosity changes induced by halite dissolution/precipitation, and brine and heat migration. Since the results are quite satisfactory, the simulator is used to predict the long-term response of a generic salt repository for heat-generating nuclear waste. To evaluate the impacts of halite solubility on the predictions, two simulations that respectively consider or neglect solubility constraints are performed. In the scenario studied, the results are not significantly affected by dissolution/precipitation, and only some differences are observed due to changes in porosity, but the dominating processes remain the same. With the new provisions, TOUGH-FLAC is more complete in terms of processes occurring around a heat-releasing nuclear waste package and can therefore provide more accurate predictions of the long-term performance of a nuclear waste repository in salt formations.

Keywords

Natural and crushed salt Halite solubility THM processes Nuclear waste disposal Numerical modeling 

Notes

Acknowledgements

Funding for this work has been provided by the Spent Fuel and Waste Disposition Campaign, Office of Nuclear Energy of the U.S. Department of Energy, under Contract Number DE-AC02-05CH11231 with Berkeley Lab.

References

  1. Battistelli, A., Calore, C., Pruess, K.: A fluid property module for the TOUGH2 simulator for saline brines with non-condensible gas. In: Proceedings of 18th Workshop Geothermal Reservoir Engineering, Stanford, CA, pp. 249–259 (1993)Google Scholar
  2. Battistelli, A., Calore, C., Pruess, K.: The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and a non-condensible gas. Geothermics 26(4), 437–464 (1997).  https://doi.org/10.1016/S0375-6505(97)00007-2 CrossRefGoogle Scholar
  3. Battistelli, A.: Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. In: Proceedings of TOUGH Symposium, Berkeley, CA (2012)Google Scholar
  4. Bechthold, W., Rothfuchs, T., Poley, A., Ghoreychi, M., Heusermann, S., Gens, A. et al.: Backfilling and sealing of underground repositories for radioactive waste in salt (BAMBUS Proj.). European Atomic Energy Community. Rep. EUR19124 EN (1999)Google Scholar
  5. Bechthold, W., Smailos, E., Heusermann, S., Bollingerfehr, W., Bazargan Sabet, B., Rothfuchs, T.: Backfilling and sealing of underground repositories for radioactive waste in salt (BAMBUS II Proj.). European Atomic Energy Community. Rep. EUR20621 EN (2004)Google Scholar
  6. Beraun, R., Molecke, M.A.: Thermal analysis of the WIPP in situ room A1 DHLW package experiments. SNL. Rep. SAND86-0681 (1987)Google Scholar
  7. Bérest, P., Bergues, J., Brouard, B., Durup, G., Guerber, B.: A measurement of creep and permeability of a salt cavern (Une mesure de la perméabilité et du fluage d’une caverne dans le sel). Compte Rendu Académie des Sciences (Paris) 329, 103–108 (1999)Google Scholar
  8. Blanco-Martín, L., Rutqvist, J., Birkholzer, J.T.: Long-term modeling of the thermal-hydraulic-mechanical response of a generic salt repository for heat-generating nuclear waste. Eng. Geol. 193, 198–211 (2015a).  https://doi.org/10.1016/j.enggeo.2015.04.014 CrossRefGoogle Scholar
  9. Blanco-Martín, L., Wolters, R., Rutqvist, J., Lux, K.-H., Birkholzer, J.T.: Comparison of two simulators to investigate thermal-hydraulic-mechanical processes related to nuclear waste isolation in saliferous formations. Comput. Geotech. 66, 219–229 (2015b).  https://doi.org/10.1016/j.compgeo.2015.01.021 CrossRefGoogle Scholar
  10. Blanco-Martín, L., Rutqvist, J., Birkholzer, J.T., Battistelli, A.: Long-term modeling of coupled processes in a generic salt repository for heat-generating nuclear waste: preliminary analysis of the impacts of halite dissolution and precipitation. In: Proceedings of 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA. Paper ARMA 15-440 (2015c)Google Scholar
  11. Blanco-Martín, L., Wolters, R., Rutqvist, J., Lux, K.-H., Birkholzer, J.T.: Thermal-hydraulic-mechanical modeling of a large-scale heater test to investigate rock salt and crushed salt behavior under repository conditions for heat-generating nuclear waste. Comput. Geotech. 77, 120–133 (2016).  https://doi.org/10.1016/j.compgeo.2016.04.008 CrossRefGoogle Scholar
  12. Blanco-Martín, L., Rutqvist, J., Birkholzer, J.T.: Extension of TOUGH-FLAC to the finite strain framework. Comput. Geosci. 108, 64–71 (2017).  https://doi.org/10.1016/j.cageo.2016.10.015 CrossRefGoogle Scholar
  13. Bourret, S.M., Stauffer, P.H., Weaver, D.J., Caporuscio, F.A., Otto, S., Boukhalfa, H., Jordan, A.B., Chu, S., Zyvoloski, G.A., Johnson, P.J.: Experiments and modeling in support of generic salt repository science. LANL. Rep. LANL FCRD-UFD-2016-000445 (2016)Google Scholar
  14. Broome, S.T., Bauer, S.J., Hansen, F.D.: Reconsolidation of crushed salt to 250°C under hydrostatic and shear stress conditions. In: Proceedings of 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, MN. Paper ARMA 14-7088 (2014)Google Scholar
  15. Callahan, G.D., Mellegard, K.D., Hansen, F.D.: Constitutive behavior of reconsolidating crushed salt. RE/SPEC Inc. Rep. SAND-98-0179C (1998)Google Scholar
  16. Camphouse, R.C., Gross, M., Herrick, C.G., Kicker, D.C., Thompson, B.: Recommendations and justifications of parameter values for the run-of-mine salt panel closure system design modeled in the PCS- 2012 PA. SNL. Final memo 5412 (2012)Google Scholar
  17. Carter, J.T., Luptak, A.J., Gastelum, J., Stockman, C., Miller, A.: Fuel cycle potential waste inventory for disposition. SRNL. Rep. FCR&D-USED-2010-000031 Rev. 5 (2011)Google Scholar
  18. Driesner, T., Heinrich, C.H.: The system H2O-NaCl. Part I: correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 71, 4880–4901 (2007).  https://doi.org/10.1016/j.gca.2006.01.033 CrossRefGoogle Scholar
  19. Driesner, T.: The system H2O-NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000°C, 1 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 71, 4902–4919 (2007).  https://doi.org/10.1016/j.gca.2007.05.026 CrossRefGoogle Scholar
  20. Fokker, P.A.: The behaviour of salt and salt caverns. Ph.D. dissertation, TU Delft (1995)Google Scholar
  21. Hardin, E., Voegele, M.: Alternative concepts for direct disposal of dual-purpose canisters. SNL. Rep. FCRD-UFD-2013-000102 Rev. (2013)Google Scholar
  22. Hou, Z.: Mechanical and hydraulic behaviour of rock salt in the excavation disturbed zone around underground facilities. Int. J. Rock Mech. Min. Sci. 40, 725–738 (2003).  https://doi.org/10.1016/S1365-1609(03)00064-9 CrossRefGoogle Scholar
  23. Hunsche, U., Hampel, A.: Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng. Geol. 52, 271–291 (1999).  https://doi.org/10.1016/S0013-7952(99)00011-3 CrossRefGoogle Scholar
  24. Hurtado, L.D., Knowles, M.K., Kelley, V.A., Jones, T.L., Ogintz, J.B., Pfeifle, T.W.: WIPP shaft seal system parameters recommended to support compliance calculations. SNL. Rep. SAND-97-1287 (1997)Google Scholar
  25. Itasca: FLAC3D (Fast Lagrangian analysis of continua in 3 dimensions), Version 5.0. Itasca Consulting Group, Minneapolis, MN (2012)Google Scholar
  26. Johnson, P.J., Bourret, S.M., Zyvoloski, G.A., Boukhalfa, H., Stauffer, P.H., Weaver, D.J.: Experiments and modeling to support field test design. LANL. Rep. LA-UR-17-27759 DMS SFWD-SFWST-2017-000102 (2017)Google Scholar
  27. Jordan, A.B., Boukhalfa, H., Caporuscio, F.A., Robinson, B.A., Stauffer, P.H.: Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations. Environ. Sci. Technol. 49(11), 6783–6790 (2015).  https://doi.org/10.1021/acs.est.5b01002 CrossRefGoogle Scholar
  28. Jové-Colón, C., Greathouse, J.A., Teich-McGoldrick, S., Cygan, R.T., Hadgu, T., Bean, J.E., Martínez, M.J., Hopkins, P.L., Argüello, J.G. Hansen, F.D.: Evaluation of generic EBS design concepts and process models: implications to EBS design optimization. SNL. Rep. FCRD-USED-2012-000140 (2012)Google Scholar
  29. Kenter, C.J., Doig, S.J., Rogaar, H.P., Fokker, P.A., Davies, D.R.: Diffusion of brine through rock salt of roof caverns. In: Proceedings of SMRI Fall Meeting Paris (1990)Google Scholar
  30. Kim, J., Tchelepi, H., Juanes, R.: Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics. In: SPE Reservoir Simulation Symposium (2009)Google Scholar
  31. Kim, J., Sonnenthal, E.L., Rutqvist, J.: Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials. Int. J. Numer. Meth. Eng. 92(5), 425–456 (2012).  https://doi.org/10.1002/nme.4340 CrossRefGoogle Scholar
  32. Korthaus, E.: Experiments on crushed salt consolidation with true triaxial testing device as a contribution to an EC benchmark exercise. Forschungszentrum Karlsruhe GmbH. Rep. FZKA-6181 (1998)Google Scholar
  33. Kröhn, K.-P., Zhang, C.-L., Czaikowski, O., Stührenberg, D., Heemann, U.: The compaction behaviour of salt backfill as a THM-process. In: Proceedings of 8th Conference on Mechanical Behavior Salt (SaltMech8), pp. 49–59 (2015)Google Scholar
  34. Leverett, M.C.: Capillary behaviour in porous solids. Petrol. Trans. AIME 192, 152–169 (1941)CrossRefGoogle Scholar
  35. McTigue, D.F., Nowak, E.J.: Brine transport studies in the bedded salt of the Waste Isolation Pilot Plant (WIPP). In: Proceedings of Fall Meeting Materials Research Society, Boston, MA (1987)Google Scholar
  36. Nowak, E.J.: Preliminary results of brine migration studies in the Waste Isolation Pilot Plant (WIPP). SNL. Rep. SAND86-0720 (1986)Google Scholar
  37. Nowak, E.J., McTigue, D.F.: Interim results of brine transport studies in the Waste Isolation Pilot Plant (WIPP). SNL. Rep. SAND87-0880 (1987)Google Scholar
  38. Olivella, S., Castagna, S., Alonso, E.E., Lloret, A.: Porosity variations in saline media induced by temperature gradients: experimental evidences and modelling. Transp. Porous Med. 90, 763–777 (2011).  https://doi.org/10.1007/s11242-011-9814-x CrossRefGoogle Scholar
  39. Palliser, C., McKibbin, R.: A model for deep geothermal brines, I: T-P-X state-space description. Transp. Porous Med. 33, 65–80 (1998).  https://doi.org/10.1023/A:1006537425101 CrossRefGoogle Scholar
  40. Phillips, S.L., Igbene, A., Fair, J.A., Ozbek, H., Tavanam, M.: A technical databook for geothermal energy utilization. LBNL. Rep. LBL-12810 (1981)Google Scholar
  41. Popp, T., Kern, H., Schulze, O.: Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. J. Geophys. Res. 106(B3), 4061–4078 (2001).  https://doi.org/10.1029/2000JB900381 CrossRefGoogle Scholar
  42. Popp, T., Minkley, W.: Salt barrier integrity during gas pressure build-up in a radioactive waste repository—implications from lab and field investigations. In: Proceedings of 44th US Rock Mechanics/Geomechanics Symposium, Salt Lake City, UT. Paper ARMA 10-493 (2010)Google Scholar
  43. Pruess, K., Oldenburg, C.M., Moridis, G.: TOUGH2 user’s guide, version 2. LBNL. Rep. LBNL-43134 (rev.) (2011)Google Scholar
  44. Pudewills, A., Droste, J.: Numerical modeling of the thermomechanical behavior of a large-scale underground experiment. Comput. Struct. 81, 911–918 (2003).  https://doi.org/10.1016/S0045-7949(02)00427-3 CrossRefGoogle Scholar
  45. Rege, S.D., Fogler, H.S.: Competition among flow, dissolution and precipitation in porous media. AIChE J. 35(7), 1177–1185 (1989).  https://doi.org/10.1002/aic.690350713 CrossRefGoogle Scholar
  46. Rutqvist, J., Wu, Y.S., Tsang, C.-F., Bodvarsson, G.: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 39, 429–442 (2002).  https://doi.org/10.1016/S1365-1609(02)00022-9 CrossRefGoogle Scholar
  47. Rutqvist, J.: An overview of TOUGH-based geomechanics models. Comput. Geosci. 108, 56–63 (2017).  https://doi.org/10.1016/j.cageo.2016.09.007 CrossRefGoogle Scholar
  48. Schulze, O., Popp, T., Hartmut, K.: Development of damage and permeability in deforming rock salt. Eng. Geol. 61, 163–180 (2001).  https://doi.org/10.1016/S0013-7952(01)00051-5 CrossRefGoogle Scholar
  49. Settari, A., Mourits, F.: A coupled reservoir and geomechanical simulation system. SPE J. 3(3), 219–226 (1998).  https://doi.org/10.2118/50939-PA CrossRefGoogle Scholar
  50. Stauffer, P.H., Harp, D.A., Jordan, A.B., Lu, Z., Kelkar, S., Kang, Q., Ten Cate, J., Boukhalfa, H., Labyed, Y., Reimus, P.W., Caporuscio, F.A., Miller, T.A., Robinson, B.A.: Coupled model for heat and water transport in a high level waste repository in salt. LANL. Rep. LANL M2FT-13L A08180113 (2013)Google Scholar
  51. Stephansson, O., Hudson, J., Jing, L.: Coupled Thermo-Hydro-Mechanical-Chemical Processes In Geo-Systems: Fundamentals, Modelling, Experiments, and Applications. Geo-Engineering Book Series, vol. 2. Elsevier, London (2004)Google Scholar
  52. Tsang, C.-F.: Coupled hydromechanical-thermomechanical processes in rock fractures. Rev. Geophys. 29(4), 537–551 (1991).  https://doi.org/10.1029/91RG01832 CrossRefGoogle Scholar
  53. Tsang, C.-F., Stephansson, O., Jing, L., Kautsky, F.: DECOVALEX Project: from 1992 to 2007. Environ. Geol. 57, 1221–1237 (2009).  https://doi.org/10.1007/s00254-008-1625-1 CrossRefGoogle Scholar
  54. Vaughan, P.J.: Analysis of permeability reduction during flow of heated, aqueous fluid through westerly granite. In: Tsang, C.F. (ed.) Coupled Processes Associated with Nuclear Waste Repositories, pp. 529–539. Academic Press, New York (1987)CrossRefGoogle Scholar
  55. Vargaftik, N.B.: Tables on the Thermophysical Properties of Liquids and Gases, 2nd edn. Hemisphere Publishing, New York (1975).  https://doi.org/10.1002/aic.690210636 Google Scholar
  56. Verma, A., Pruess, K.: Thermohydrologic conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. J. Geophys. Res. 93(B2), 1159–1173 (1988).  https://doi.org/10.1029/JB093iB02p01159 CrossRefGoogle Scholar
  57. Walker, W.R., Sabey, J.D., Hampton, D.R.: Studies of heat transfer and water migration in soils. Department Agric. Chem. Eng., Colorado State University. Final Rep. (1981)Google Scholar
  58. Wang, W., Kosakowski, G., Kolditz, O.: A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput. Geosci. 35, 1631–1641 (2008).  https://doi.org/10.1016/j.cageo.2008.07.007 CrossRefGoogle Scholar
  59. Wieczorek, K., Czaikowski, O., Zhang, C.L., Stührenberg, D.: Recent experimental and modeling results on crushed salt consolidation. In: Proceedings of 3rd US/German Workshop Salt Repository Research, Design and Operation, Albuquerque (NM) (2012)Google Scholar
  60. Wolters, R., Lux, K.-H., Düsterloh, U.: Evaluation of rock salt barriers with respect to tightness: influence of thermomechanical damage, fluid infiltration and sealing/healing. In: Proceedings of 7th International Conference on Mechanical Behavior Salt (SaltMech7), pp. 425–434 (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Energy Geosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Risamb DepartmentSaipem SpAFanoItaly
  3. 3.MINES ParisTech, Department of GeosciencesPSL Research UniversityFontainebleauFrance

Personalised recommendations