Transport in Porous Media

, Volume 124, Issue 1, pp 117–135 | Cite as

Fast Tracking of Fluid Invasion Using Time-Resolved Neutron Tomography

  • C. JailinEmail author
  • M. Etxegarai
  • E. Tudisco
  • S. A. Hall
  • S. Roux


Water flow in a sandstone sample is studied during an experiment in situ in a neutron tomography setup. In this paper, a projection-based methodology for fast tracking of the imbibition front in 3D is presented. The procedure exploits each individual neutron 2D radiograph, instead of the tomographic-reconstructed images, to identify the 4D (space and time) saturation field, offering a much higher time resolution than more standard reconstruction-based methods. Based on strong space and time regularizations of the fluid flow, with an a priori defined space and time shape functions, the front shape is identified at each projection time step. This procedure aiming at a fast tracking the fluid advance is explored through two examples. The first one shows that the fluid motion that occurs during one single 180\(^{^{\circ }}\) scan can be resolved at 5 Hz with a sub-pixel accuracy whereas it cannot be unraveled with plain tomographic reconstruction. The second example is composed of 42 radiographs acquired all along a complete fluid invasion in the sample. This experiment uses the very same approach with the additional difficulty of large fluid displacement in between two projections. As compared to the classical approach based on full reconstructions at each invasion stage, the proposed methodology in the studied examples is roughly 300 times faster offering an enhanced time resolution.


Pressure-driven flow Neutron tomography 4D in situ measurement Model-driven inverse problem Proper generalized decomposition 



Clément Jailin would like to especially thank the members of the Division of Solid Mechanics of Lund University for their warm welcome and for giving him the opportunity to work on this subject.


  1. Akin, S., Schembre, J.M., Bhat, S.K., Kovscek, A.R.: Spontaneous imbibition characteristics of diatomite. J. Pet. Sci. Eng. 25(3), 149–165 (2000)CrossRefGoogle Scholar
  2. Armstrong, R.T., Ott, H., Georgiadis, A., Rücker, M., Schwing, A., Berg, S.: Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow. Water Resour. Res. 50(12), 9162–9176 (2014)CrossRefGoogle Scholar
  3. Basbug, B., Karpyn, Z.T., et al.: Determination of relative permeability and capillary pressure curves using an automated history-matching approach. Society of Petroleum Engineers. In: SPE Eastern Regional/AAPG Eastern Section Joint Meeting (2008)Google Scholar
  4. Bésuelle, P., Desrues, J., Raynaud, S.: Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int. J. Rock Mech. Min. Sci. 37(8), 1223–1237 (2000)CrossRefGoogle Scholar
  5. Bultreys, T., Boone, M.A., Boone, M.N., De Schryver, T., Masschaele, B., Van Hoorebeke, L., Cnudde, V.: Fast laboratory-based micro-computed tomography for pore-scale research: illustrative experiments and perspectives on the future. Adv. Water Resour. 95, 341–351 (2016a)CrossRefGoogle Scholar
  6. Bultreys, T., De Boever, W., Cnudde, V.: Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth Sci. Rev. 155, 93–128 (2016b)CrossRefGoogle Scholar
  7. Cnudde, V., Dierick, M., Vlassenbroeck, J., Masschaele, B., Lehmann, E., Jacobs, P., Van Hoorebeke, L.: High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials. Nucl. Instrum. Methods Phys. Res. Sect. B 266(1), 155–163 (2008)CrossRefGoogle Scholar
  8. David, C., Menéndez, B., Mengus, J.-M.: Influence of mechanical damage on fluid flow patterns investigated using CT scanning imaging and acoustic emissions techniques. Geophys. Res. Lett. 35(16), L16313 (2008)CrossRefGoogle Scholar
  9. Deinert, M.R., Parlange, J.-Y., Steenhuis, T., Throop, J., Ünlü, K., Cady, K.B.: Measurement of fluid contents and wetting front profiles by real-time neutron radiography. J. Hydrol. 290(3), 192–201 (2004)CrossRefGoogle Scholar
  10. Dobson, K.J., Coban, S.B., McDonald, S.A., Walsh, J.N., Atwood, R.C., Withers, P.J.: 4-d imaging of sub-second dynamics in pore-scale processes using real-time synchrotron x-ray tomography. Solid Earth 7(4), 1059 (2016)CrossRefGoogle Scholar
  11. Gomes Perini, L.A., Passieux, J.-C., Périé, J.-N.: A multigrid PGD-based algorithm for volumetric displacement fields measurements. Strain 50(4), 355–367 (2014)CrossRefGoogle Scholar
  12. Gruener, S., Sadjadi, Z., Hermes, H.E., Kityk, A.V., Knorr, K., Egelhaaf, S.U., Rieger, H., Huber, P.: Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores. Proc. Natl. Acad. Sci. 109(26), 10245–10250 (2012)CrossRefGoogle Scholar
  13. Gruener, S., Hermes, H.E., Schillinger, B., Egelhaaf, S.U., Huber, P.: Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: nano-rheology and determination of pore size distributions from the shape of imbibition fronts. Colloids Surf. A Phys. Eng. Asp. 496, 13–27 (2016)CrossRefGoogle Scholar
  14. Hajizadeh, Y., Amorim, E., Costa Sousa, M., et al.: Building trust in history matching: the role of multidimensional projection. In: SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers (2012)Google Scholar
  15. Hall, S.A., Hughes, D., Rowe, S.: Local characterisation of fluid flow in sandstone with localised deformation features through fast neutron imaging. In: EPJ Web of Conferences, vol. 6. EDP Sciences, p. 22008 (2010)Google Scholar
  16. Hall, S.A.: Characterization of fluid flow in a shear band in porous rock using neutron radiography. Geophys. Res. Lett. 40(11), 2613–2618 (2013)CrossRefGoogle Scholar
  17. Herman, G.T.: Correction for beam hardening in computed tomography. Phys. Med. Biol. 24(1), 81 (1979)CrossRefGoogle Scholar
  18. Hild, F., Bouterf, A., Chamoin, L., Leclerc, H., Mathieu, F., Neggers, J., Pled, F., Tomičević, Z., Roux, S.: Toward 4D mechanical correlation. Adv. Model. Simul. Eng. Sci. 3(1), 17 (2016)CrossRefGoogle Scholar
  19. Jailin, C., Bouterf, A., Poncelet, M., Roux, S.: In situ \(\mu \)CT-scan mechanical tests: fast 4D mechanical identification. Exp. Mech. 57(8), 1327–1340 (2017)CrossRefGoogle Scholar
  20. Kardjilov, N., Hilger, A., Manke, I., Strobl, M., Dawson, M., Williams, S., Banhart, J.: Neutron tomography instrument CONRAD at HZB. Nucl. Instrum. Methods Phys. Res. Sect. A 651(1), 47–52 (2011)CrossRefGoogle Scholar
  21. Khalili, M.H., Brisard, S., Bornert, M., Aimedieu, P., Pereira, J.-M., Roux, J.-N.: Discrete digital projections correlation: a reconstruction-free Method to quantify local kinematics in granular media by X-ray tomography. Exp. Mech. 57(6), 819–830 (2017)CrossRefGoogle Scholar
  22. Ladevèze, P.: Nonlinear Computational Structural Mechanics: New Approaches and Non-incremental Methods of Calculation. Springer, Berlin (2012)Google Scholar
  23. Leclerc, H., Roux, S., Hild, F.: Projection savings in CT-based digital volume correlation. Exp. Mech. 55(1), 275–287 (2015)CrossRefGoogle Scholar
  24. Lee, C.-H.: Parametric study of factors affecting capillary imbibition in fractured porous media. PhD thesis, The Pennsylvania State University (2011)Google Scholar
  25. Maire, E., Withers, P.J.: Quantitative X-ray tomography. Int. Mater. Rev. 59(1), 1–43 (2014)CrossRefGoogle Scholar
  26. Maire, E., Le Bourlot, C., Adrien, J., Mortensen, A., Mokso, R.: 20 Hz X-ray tomography during an in situ tensile test. Int. J. Fract. 200(1–2), 3–12 (2016)CrossRefGoogle Scholar
  27. Nouy, A.: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199(23), 1603–1626 (2010)CrossRefGoogle Scholar
  28. Passieux, J.C., Périé, J.N.: High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int. J. Numer. Methods Eng. 92(6), 531–550 (2012)CrossRefGoogle Scholar
  29. Rangel-German, E.R., Kovscek, A.R.: Experimental and analytical study of multidimensional imbibition in fractured porous media. J. Pet. Sci. Eng. 36(1), 45–60 (2002)CrossRefGoogle Scholar
  30. Schillinger, B., Grazzi, F.: Artefacts in neutron CT—their effects and how to reduce some of them. Phys. Procedia 69, 244–251 (2015)CrossRefGoogle Scholar
  31. Taillandier-Thomas, T., Jailin, C., Roux, S., Hild, F.: Measurement of 3D displacement fields from few tomographic projections. In: SPIE Photonics Europe. International Society for Optics and Photonics, pp. 98960L–98960L (2016)Google Scholar
  32. Tötzke, C., Kardjilov, N., Manke, I., Oswald, S.E.: Capturing 3D water flow in rooted soil by ultra-fast neutron tomography. Sci. Rep. 7, 6192 (2017)CrossRefGoogle Scholar
  33. Tudisco, E., Etxegarai, M., Hall, S.A., Charalampidou, E.M., Couples, G., Kardjilov, N.: Fast 4D imaging of fluid flow in rock by high-speed neutron tomography (2018, in preparation)Google Scholar
  34. Tudisco, E., Stephen Hall, A., Charalampidou, E.M., Kardjilov, N., Hilger, A., Sone, H.: Full-field measurements of strain localisation in sandstone by neutron tomography and 3D-volumetric digital image correlation. Phys. Procedia 69, 509–515 (2015)CrossRefGoogle Scholar
  35. Van Aarle, W., Palenstijn, W.J., De Beenhouwer, J., Altantzis, T., Bals, S., Batenburg, K.J., Sijbers, J.: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47 (2015)CrossRefGoogle Scholar
  36. Youssef, S., Deschamps, H., Dautriat, J., Rosenberg, E., Oughanem, R., Maire, E., Mokso, R.: 4D imaging of fluid flow dynamics in natural porous media with ultra-fast X-ray microtomography. In: International Symposium of the SCA, Napa Valley, California, vol. 176 (2013)Google Scholar
  37. Zou, S., Hussain, F., Arns, J., Guo, Z., Arns, C.H., et al.: Computation of relative permeability from in situ imaged fluid distributions at the pore scale. In: International Petroleum Technology Conference. International Petroleum Technology Conference (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.LMT (ENS Paris-Saclay/CNRS/University Paris-Saclay)CachanFrance
  2. 2.3SR (Grenoble INP/CNRS/University of Grenoble Alpes)GrenobleFrance
  3. 3.Division of Geotechnical EngineeringLund UniversityLundSweden
  4. 4.Division of Solid MechanicsLund UniversityLundSweden

Personalised recommendations