Transport in Porous Media

, Volume 122, Issue 3, pp 611–632 | Cite as

A Priori Parameter Estimation for the Thermodynamically Constrained Averaging Theory: Species Transport in a Saturated Porous Medium

  • Cass T. Miller
  • Francisco J. Valdés-Parada
  • Sassan Ostvar
  • Brian D. Wood
Article
  • 74 Downloads

Abstract

The thermodynamically constrained averaging theory (TCAT) has been used to develop a simplified entropy inequality (SEI) for several major classes of macroscale porous medium models in previous works. These expressions can be used to formulate hierarchies of models of varying sophistication and fidelity. A limitation of the TCAT approach is that the determination of model parameters has not been addressed other than the guidance that an inverse problem must be solved. In this work we show how a previously derived SEI for single-fluid-phase flow and transport in a porous medium system can be reduced for the specific instance of diffusion in a dilute system to guide model closure. We further show how the parameter in this closure relation can be reliably predicted, adapting a Green’s function approach used in the method of volume averaging. Parameters are estimated for a variety of both isotropic and anisotropic media based upon a specified microscale structure. The direct parameter evaluation method is verified by comparing to direct numerical simulation over a unit cell at the microscale. This extension of TCAT constitutes a useful advancement for certain classes of problems amenable to this estimation approach.

Keywords

TCAT Multiscale Closure approximation Porous media 

Notation

Roman Letters

b

Entropy source density

\({\varvec{\mathrm b}}\)

Variable vector that maps \(\nabla C^{Aw}\) to \({\tilde{C}}_{Aw}\)

C

Species concentration in an entity

\({\hat{\varvec{\mathsf {D}}}}\)

Effective diffusivity tensor

\({{\hat{\varvec{\mathsf {D}}}}}^{ABw}\)

Second-rank symmetric closure tensor for a binary system

\({{\hat{D}}}\)

Diagonal component of the macroscale effective diffusivity tensor

\({{\hat{D}}}_{Aw}\)

Molecular diffusion coefficient

\(\varvec{\mathsf {d}}\)

Rate of strain tensor

\({\overline{E}}\)

Partial mass energy

\({\mathcal E}_{**}^{{\overline{\overline{w}}}}\)

Particular material derivative form of a macroscale entity total energy conservation equation

\(\varvec{\mathsf {G}}\)

Geometric orientation tensor

G

Green’s function associated with the initial and boundary value problem for concentration deviations

\({\mathcal G}_{**}^{{\overline{\overline{w}}}}\)

Particular material derivative form of a macroscale body force potential balance equation

\({\overset{{\alpha }\rightarrow {ws}}{{G}_{0}}}\)

Macroscale transfer associated with body force potential from the \(\alpha =w,s\) to the ws interface

\({\varvec{\mathrm g}}\)

Gravitational acceleration vector

h

Energy source density

\({\varvec{\mathsf {I}}}\)

Identity tensor

\(\mathscr {I}\)

Initial condition source term

\({{\mathscr {I}}_{s}}\)

Index set of species

i

Species qualifier

\(J_s^{ws}\)

Mean curvature of the ws interface

\(K_{E}\)

Kinetic energy term due to velocity fluctuations

\(\ell _\mathrm{mi}\)

Microscale length scale

\(\ell _\mathrm{r}^\mathrm{r}\)

Resolution length scale

\(\ell ^\mathrm{ma}\)

Macroscopic length scale

\(\ell ^\mathrm{me}\)

Megascale length scale

\({\mathcal M}_{**}^{{\overline{\overline{{i}w}}}}\)

Particular material derivative form of a macroscale species mass conservation equation

\({\overset{{{i}{{\kappa }}}\rightarrow {{{i}{{\alpha }}}}}{M}}\)

Transfer of mass of species \({i}\) from the \({{\kappa }}\) entity to the \({{\alpha }}\) entity per unit volume per unit time

\(MW_i\)

Molecular weight of species i

\(MW_w\)

Molecular weight for entity w

\({{\varvec{\mathrm n}}_{{{\alpha }}}}\)

Outward unit normal vector from entity \({{\alpha }}\)

p

Fluid pressure

\({\overset{{\alpha }\rightarrow {ws}}{{Q}_{1}}}\)

Entity-based energy exchange term from entity \(\alpha =w,s\) to the ws interface

\({\varvec{\mathrm q}}\)

Non-advective energy flux vector

\({\varvec{\mathrm q}}_{{\varvec{\mathrm g}}0}\)

Non-advective energy flux vector due to the product of fluctuations

R

Ideal gas constant

r

Mass production rate density

\({\varvec{\mathrm r}}\)

Position vector

\({\mathcal S}_{**}^{{\overline{\overline{w}}}}\)

Particular material derivative form of a macroscale entropy balance

\({\overset{{\alpha }\rightarrow {ws}}{{{\varvec{\mathrm T}}}_{0}}}\)

Macroscale momentum transfer from entity \(\alpha =w,s\) to the ws interface

\({\mathcal T}_*^{{\overline{\overline{w}}}}\)

Particular material derivative form of a macroscale differential thermodynamic equation

\({\mathcal T}_{{\mathcal G}*}^{{\overline{\overline{w}}}}\)

Particular material derivative form of the body source potential equation

\(\varvec{\mathsf {t}}\)

Stress tensor

t

Time

\(t_\mathrm{{mi}}^*\)

Microscale time scale

\(t_\mathrm{{ma}}^*\)

Macroscale time scale

\({{{\varvec{\mathrm u}}}^{\,{}}_{}}\)

Species deviation velocity vector

\({\varvec{\mathrm v}}\)

Velocity

\({\varvec{\mathrm x}}\)

Position vector locating the centroid of the REV

x

Mole fraction of a species in an entity

Greek Letters

\(\Gamma \)

Boundary of REV

\({{\Gamma }_{w \mathrm e}}\)

External boundary of the w phase on the boundary of an REV

\({{\Gamma }_{w \mathrm i}}\)

Internal boundary of the w phase within an REV

\(\gamma ^{ws}\)

Macroscale interfacial tension of the ws interface

\({{\hat{{\gamma }}}}\)

Macroscale activity coefficient

\({{{\epsilon }^{{\overline{\overline{{{\alpha }}}}}}}}\)

Specific entity measure of the \({{\alpha }}\) entity (volume fraction, specific interfacial area)

\(\eta \)

Entropy density

\({\theta }\)

Temperature

\({\Lambda }\)

Entropy production rate density

\({\lambda }_{{\mathcal G}}^w\)

Lagrange multiplier for potential energy balance equation

\({\lambda }_{{\mathcal M}}^{{i}w}\)

Lagrange multiplier for mass conservation equation

\({\lambda }_{{\mathcal M}_{i}}\)

Constant related to the sum of potentials

\({\lambda }_{{\mathcal T}}^w\)

Lagrange multiplier for thermodynamic equation

\({\lambda }_{{\mathcal T}{\mathcal G}}^w\)

Lagrange multiplier for derivative of potential energy equation

\(\mu \)

Chemical potential

\(\mu _0\)

Reference chemical potential

\({\varvec{\mathrm \xi }}\)

Microscale position vector relative to the centroid of the REV

\(\rho \)

Mass density

\({\varvec{\mathrm \varphi }}\)

Entropy density flux vector

\(\psi \)

Body force potential per unit mass (e.g., gravitational potential)

\({{\Omega }_{}}\)

Spatial domain

\({\Omega }^0\)

Megascale spatial domain

\({{\omega }_{{}{}}}\)

Mass fraction of a species in an entity

Subscripts and Superscripts

A

Species qualifier (subscript, superscript)

B

Species qualifier (subscript, superscript)

\({\mathcal E}\)

Energy equation qualifier (subscript)

\({\mathcal G}\)

Potential equation qualifier (subscript)

\({i}\)

General index denoting a species (subscript, superscript)

l

Length qualifier for regularly shaped domain (subscript)

\({\mathcal M}\)

Mass equation qualifier (subscript)

N

Number of chemical species (superscrpt)

\({\varvec{\mathrm r}}\)

Associated with the position vector \({\varvec{\mathrm r}}\) (subscript)

s

Index that indicates a solid phase (subscript, superscript)

\({\mathcal T}\)

Thermodynamic equation qualifier (subscript)

\({\mathcal T}{\mathcal G}\)

Fluid potential energy identity qualifier (subscript)

w

Entity index corresponding to the wetting phase (subscript, superscript)

ws

Entity index corresponding to the wetting-solid interface (superscript)

\({\varvec{\mathrm x}}\)

Associated with the position vector \({\varvec{\mathrm x}}\) (subscript)

\({\varvec{\mathrm \xi }}\)

Associated with the position vector \({\varvec{\mathrm \xi }}\) (subscript)

Other Mathematical Symbols

Above a superscript refers to a density weighted macroscale average

\(=\)

Above a superscript refers to a uniquely defined macroscale average

\(\tilde{}\)

Deviation of a microscale quantity from the macroscale average

\(\otimes \)

Outer vector product

\({{{\left\langle f \right\rangle _{{{\Omega }_{{{\alpha }}}},{{\Omega }_{}},w}}}}\)

Averaging operator, \(\int _{{\Omega }_{{{\alpha }}}}wf\, \mathrm {d}\mathfrak {r}/\int _{{{\Omega }_{}}} w\, \mathrm {d}\mathfrak {r}\)

\(\mathrm {D}^{}_{{}}/\mathrm {D}t\)

Material derivative

Abbreviations

CEI

Constrained entropy inequality

DNS

Direct numerical simulation

EI

Entropy inequality

MVA

Method of volume averaging

REV

Representative elementary volume

SEI

Simplified entropy inequality

TCAT

Thermodynamically constrained averaging theory

Notes

Acknowledgements

The work of CTM was supported by Army Research Office Grant W911NF-14-1-02877, and National Science Foundation Grant 1619767. The research contributions of BDW and SO were supported by the National Science Foundation, Grant EAR-1521441. The efforts of W. G. Gray to review and comment on various versions of this work are appreciated. FJVP gratefully acknowledges the support of CTM, which enabled the presentation of this work at the 2017 fall meeting of the American Geophysical Union.

References

  1. Chang, H.: Effective diffusion and conduction in two-phase media: a unified approach. AIChE J. 29, 846–853 (1983)CrossRefGoogle Scholar
  2. Dye, A.L., McClure, J.E., Gray, W.G., Miller, C.T.: Multiscale modeling of porous medium systems. In: Vafai, K. (ed.) Handbook of Porous Media, 3rd edn, pp. 3–45. Taylor and Francis, London (2015)Google Scholar
  3. Gray, W.G.: Thermodynamics and constitutive theory for multiphase porous-media flow considering internal geometric constraints. Adv. Water Resour. 22(5), 521–547 (1999)CrossRefGoogle Scholar
  4. Gray, W.G.: Macroscale equilibrium conditions for two-phase flow in porous media. Int. J. Multiph. Flow 26(3), 467–501 (2000)CrossRefGoogle Scholar
  5. Gray, W.G.: On the definition of derivatives of macroscale energy for the description of multiphase systems. Adv. Water Resour. 25(8–12), 1091–1104 (2002)CrossRefGoogle Scholar
  6. Gray, W.G., Hassanizadeh, S.M.: Averaging theorems and averaged equations for transport of interface properties in multiphase systems. Int. J. Multiph. Flow 15(1), 81–95 (1989)CrossRefGoogle Scholar
  7. Gray, W.G., Hassanizadeh, S.M.: Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points. Adv. Water Resour. 21(4), 261–281 (1998)CrossRefGoogle Scholar
  8. Gray, W.G., Lee, P.C.Y.: On the theorems for local volume averaging of multiphase systems. Int. J. Multiph. Flow 3, 333–340 (1977)CrossRefGoogle Scholar
  9. Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv. Water Resour. 28(2), 161–180 (2005)CrossRefGoogle Scholar
  10. Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for heat transport in single-fluid-phase porous media systems. J. Heat Transf. 131(10), 101002 (2009).  https://doi.org/10.1115/1.3160539 CrossRefGoogle Scholar
  11. Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 5. Single-fluid-phase transport. Adv. Water Resour. 32(5), 681–711 (2009)CrossRefGoogle Scholar
  12. Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 7. Single-phase megascale flow models. Adv. Water Resour. 32(8), 1121–1142 (2009).  https://doi.org/10.1016/j.advwatres.2009.05.010 CrossRefGoogle Scholar
  13. Gray, W.G., Miller, C.T.: TCAT analysis of capillary pressure in non-equilibrium, two-fluid-phase, porous medium systems. Adv. Water Resour. 34(6), 770–778 (2011)CrossRefGoogle Scholar
  14. Gray, W.G., Miller, C.T.: A generalization of averaging theorems for porous medium analysis. Adv. Water Resour. 62, 227–237 (2013).  https://doi.org/10.1016/j.advwatres.2013.06.006 CrossRefGoogle Scholar
  15. Gray, W.G., Miller, C.T.: Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Springer, Berlin (2014).  https://doi.org/10.1007/978-3-319-04010-3 CrossRefGoogle Scholar
  16. Gray, W.G., Leijnse, A., Kolar, R.L., Blain, C.A.: Mathematical Tools for Changing Spatial Scales in the Analysis of Physical Systems. CRC Press, Boca Raton (1993)Google Scholar
  17. Gray, W.G., Tompson, A.F.B., Soll, W.E.: Closure conditions for two-fluid flow in porous media. Transp. Porous Media 47(1), 29–65 (2002)CrossRefGoogle Scholar
  18. Gray, W.G., Dye, A.L., McClure, J.E., Pyrak-Nolte, L.J., Miller, C.T.: On the dynamics and kinematics of two-fluid-phase flow in porous media. Water Resour. Res. 51(7), 5365–5381 (2015).  https://doi.org/10.1002/2015wr016921 CrossRefGoogle Scholar
  19. Jackson, A.S., Miller, C.T., Gray, W.G.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow. Adv. Water Resour. 32(6), 779–795 (2009)CrossRefGoogle Scholar
  20. Jackson, A.S., Rybak, I., Helmig, R., Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models. Adv. Water Resour. 42, 71–90 (2012).  https://doi.org/10.1016/j.advwatres.2012.01.006 CrossRefGoogle Scholar
  21. Maxwell, J.: Treatise on Electricity and Magnetism, vol. I, 2nd edn. Dover Publications, New York (1881)Google Scholar
  22. Miller, C.T., Gray, W.G.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 2. Foundation. Adv. Water Resour. 28(2), 181–202 (2005)CrossRefGoogle Scholar
  23. Miller, C.T., Gray, W.G.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 4. Species transport fundamentals. Adv. Water Resour. 31(3), 577–597 (2008)CrossRefGoogle Scholar
  24. Miller, C.T., Valdés-Parada, F.J., Wood, B.D.: A pedagogical approach to the thermodynamically constrained averaging theory. Transp. Porous Meda 119, 585–609 (2017).  https://doi.org/10.1007/s11242-017-0900-6 CrossRefGoogle Scholar
  25. Ochoa-Tapia, J., Stroeve, P., Whitaker, S.: Diffusive transport in two-phase media: spatially periodic models and Maxwell’s theory for isotropic and anisotropic systems. Chem. Eng. Sci. 49, 709–726 (1994)CrossRefGoogle Scholar
  26. Rayleigh, L.: On the influence of obstacles arranged in rectangular prder upon the properties of the medium. Philos. Mag. 34, 481–502 (1892)CrossRefGoogle Scholar
  27. Ryan, D., Carbonell, R., Whitaker, S.: Effective diffusivities for catalyst pellets under reactive conditions. Chem. Eng. Sci. 35, 10–16 (1980)CrossRefGoogle Scholar
  28. Rybak, I.V., Gray, W.G., Miller, C.T.: Modeling of two-fluid-phase flow and species transport in porous media. J. Hydrol. 521, 565–581 (2015).  https://doi.org/10.1016/j.jhydrol.2014.11.051 CrossRefGoogle Scholar
  29. Whitaker, S.: The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  30. Wood, B.D.: The role of scaling laws in upscaling. Adv. Water Resour. 32(5), 723–736 (2009)CrossRefGoogle Scholar
  31. Wood, B.D.: Technical note: revisiting the geometric theorems for volume averaging. Adv. Water Resour. 62, 340–352 (2013)CrossRefGoogle Scholar
  32. Wood, B.D., Valdés-Parada, F.J.: Volume averaging: local and nonlocal closures using a Green’s function approach. Adv. Water Resour. 51, 139–167 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of North CarolinaChapel HillUSA
  2. 2.Universidad Autónoma Metropolitana-IztapalapaMexico, D.F.Mexico
  3. 3.Oregon State UniversityCorvallisUSA

Personalised recommendations