Advertisement

A Comparative Study of Gas Flooding and Foam-Assisted Chemical Flooding in Bentheimer Sandstones

  • Martijn T. G. Janssen
  • Rashidah M. Pilus
  • Pacelli L. J. Zitha
Article

Abstract

A laboratory study of principal immiscible gas flooding schemes is reported. Very well-controlled experiments on continuous gas injection, water-alternating-gas (WAG) and alkaline–surfactant–foam (ASF) flooding were conducted. The merits of WAG and ASF compared to continuous gas injection were examined. The impact of ultra-low oil–water (o/w) interfacial tension (IFT), an essential feature of the ASF scheme along with foaming, on oil mobilisation and displacement of residual oil to waterflood was also assessed. Incremental oil recoveries and related displacement mechanisms by ASF and WAG compared to continuous gas injection were investigated by conducting CT-scanned core-flood experiments using n-hexadecane and Bentheimer sandstone cores. Ultimate oil recoveries for WAG and ASF at under-optimum salinity (o/w IFT of 10−1 mN/m) were found to be similar [60 ± 5% of the oil initially in place (OIIP)]. However, ultimate oil recovery for ASF at (near-)optimum salinity (o/w IFT of 10−2 mN/m) reached 74 ± 8% of the OIIP. Results support the idea that WAG increases oil recovery over continuous gas injection by drastically increasing the trapped gas saturation at the end of the first few WAG cycles. ASF flooding was able to enhance oil recovery over WAG by effectively lowering o/w IFT (< 10−1 mN/m) for oil mobilisation. ASF at (near-)optimum salinity increased clean oil fraction in the production stream over under-optimum salinity ASF.

Keywords

Alkaline Surfactant Foam Oil Immiscible gas injection Water-alternating-gas Enhanced oil recovery 

Notes

Acknowledgements

This study is the result of collaboration between Delft University of Technology, Universiti Teknologi Petronas, Petronas and Shell. We are grateful to Petronas and Shell for funding the project. The authors thank Petronas for the supply of materials and data.

References

  1. Aderangi, N., Wasam, D.T.: Coalescence of single drops at a liquid–liquid interface in the presence of surfactants/polymers. Chem. Eng. Commun. 132(1), 207–222 (1995)CrossRefGoogle Scholar
  2. Andrianov, A.I., Liu, M.K., Rossen, W.R.: Sweep efficiency in CO2 foams simulations with oil. In: IOR 2011-16th European Symposium on Improved Oil Recovery (2011)Google Scholar
  3. Aronson, A.S., Bergeron, V., Fagan, M.E., Radke, C.J.: The influence of disjoining pressure on foam stability and flow in porous media. Colloids Surf. A Physicochem. Eng. Asp. 83(2), 109–120 (1994)CrossRefGoogle Scholar
  4. Blunt, M., Zhou, D., Fenwick, D.: Three-phase flow and gravity drainage in porous media. Transp. Porous Media 20(1–2), 77–103 (1995)CrossRefGoogle Scholar
  5. Brooks, R.H., Corey, A.T.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 92, 61–88 (1966)Google Scholar
  6. Buckley, S.E., Leverett, M.: Mechanism of fluid displacement in sands. Trans. AIME 146(1), 107–116 (1942)CrossRefGoogle Scholar
  7. Castanier, L.M.: Introduction to computerized X-ray tomography for petroleum research. In: US Department of Energy Technical Report DOE/BC/14126-7. Stanford University, CA (USA). Petroleum Research Inst. (1988)Google Scholar
  8. Chatterjee, J., Wasan, D.T.: A kinetic model for dynamic interfacial tension variation in an acidic oil/alkali/surfactant system. Chem. Eng. Sci. 53(15), 2711–2725 (1998)CrossRefGoogle Scholar
  9. Darcy, H.: Les fontaines publiques de la ville de Dijon: exposition et application. Victor Dalmont (1856)Google Scholar
  10. Dietz, D.N.: A theoretical approach to the problem of encroaching and by-passing edge water. In: Akad. Van Wetenschappen, Amsterdam. Proc. B vol. 56, pp. 83–92 (1953)Google Scholar
  11. Dong, M., Foraie, J., Huang, S., Chatzis, I.: Analysis of immiscible water-alternating-gas (WAG) injection using micromodel tests. J. Can. Pet. Technol. 44(2), 17–25 (2005)CrossRefGoogle Scholar
  12. Du, D., Zitha, P.L.J., Uijttenhout, M.G.: Carbon dioxide foam rheology in porous media: a CT scan study. SPE J. 12(2), 245–252 (2007)CrossRefGoogle Scholar
  13. El Din Saad Ibrahim, A.S.: Investigation of the mobilization of residual oil using micromodels. Soc. Pet. Eng. (2009).  https://doi.org/10.2118/129515-STU Google Scholar
  14. Farajzadeh, R., Andrianov, A., Bruining, J., Zitha, P.L.J.: Comparative study of CO2 and N2 foams in porous media at low and high pressure-temperatures. Ind. Eng. Chem. Res. 48(9), 4542–4552 (2009)CrossRefGoogle Scholar
  15. Farajzadeh, R., Andrianov, A., Zitha, P.L.J.: Investigation of immiscible and miscible foam for enhancing oil recovery. Ind. Eng. Chem. Res. 49(4), 1910–1919 (2010)CrossRefGoogle Scholar
  16. Fatemi, M.S., Sohrabi, M.: Experimental investigation of near-miscible water-alternating-gas injection performance in water-wet and mixed-wet systems. Soc. Pet. Eng. (2013).  https://doi.org/10.2118/145191-PA Google Scholar
  17. Fayers, F.J.: Enhanced Oil Recovery: Proceedings of the Third European Symposium on Enhanced Oil Recovery. Elsevier Science Publishing Company, Bournemouth (1981)Google Scholar
  18. Gauglitz, P.A., Friedmann, F., Kam, S.I., Rossen, W.R.: Foam generation in homogeneous porous media. Chem. Eng. Sci. 57, 4037–4052 (2002)CrossRefGoogle Scholar
  19. Guo, H., Zitha, P.L.J., Faber, R., Buijse, M.: A novel alkaline/surfactant/foam enhanced oil recovery process. SPE J. 17(4), 186–195 (2012)CrossRefGoogle Scholar
  20. Hagoort, J.: Oil recovery by gravity drainage. Soc. Pet. Eng. 2, 139–150 (1980).  https://doi.org/10.2118/7424-PA CrossRefGoogle Scholar
  21. Hecht, E.: Optics, 4th edn. Addison-Wesley, Boston (2001)Google Scholar
  22. Hirasaki, G.J., Zhang, D.L.: Surface chemistry of oil recovery from fractured oil-wet carbonate formations. SPE J. 9(2), 151–162 (2004)CrossRefGoogle Scholar
  23. Hirasaki, G.J., Miller, C.A., Puerto, M.: Recent advances in surfactant EOR. SPE J. 16(4), 889–907 (2011)CrossRefGoogle Scholar
  24. Hosseini-Nasab, S.H., Zitha, P.L.J.: Systematic phase behaviour study and foam stability analysis for optimal alkaline/surfactant/foam enhanced oil recovery. In: IOR 2015-18th European Symposium on Improved Oil Recovery (2015)Google Scholar
  25. Howe, A.M., Clarke, A., Mitchell, J., Staniland, J., Hawkes, L.A.: Visualising surfactant EOR in core plugs and micromodels. Soc. Pet. Eng. (2015).  https://doi.org/10.2118/174643-MS Google Scholar
  26. Huang, D.D., Honarpour, M.M.: Capillary end effects in coreflood calculations. J. Pet. Sci. Eng. 19(1–2), 103–117 (1998)CrossRefGoogle Scholar
  27. Janssen, M.T.G., Zitha, P.L.J., Pilus, R.M.: Oil recovery by alkaline-surfactant-foam (ASF) flooding: effect of drive foam quality on oil bank propagation. Soc. Pet. Eng. (2018).  https://doi.org/10.2118/190235-MS Google Scholar
  28. Jong, S., Nguyen, N.M., Eberle, C.M., Nghiem, L.X., Nguyen, Q.P.: Low tension gas flooding as a novel EOR method: an experimental and theoretical investigation. Soc. Pet. Eng. (2016).  https://doi.org/10.2118/179559-MS Google Scholar
  29. Kang, W., Liu, S., Meng, L., Cao, D., Fan, H.: A novel ultra-low interfacial tension foam flooding agent to enhance heavy oil recovery. Soc. Pet. Eng. (2010).  https://doi.org/10.2118/129175-MS Google Scholar
  30. Khorshidan, H., James, L.A., Butt, D.S.: The role of film flow and wettability in immiscible assisted gravity drainage. In: International Symposium of the Society of Core Analysts, Colorado, USA (2016)Google Scholar
  31. Klitzing, R.V., Espert, A., Asnacios, A., Hellweg, T., Colin, A., Langevin, D.: Forces in foam films containing polyelectrolyte and surfactant. Colloids Surf A Physicochem Eng Asp 149(1), 131–140 (1999)CrossRefGoogle Scholar
  32. Kovscek, A.R., Radke, C.J.: Fundamentals of foam transport in porous media. In: Foams: Fundamentals and Applications in the Petroleum Industry, pp. 115–163 (1994)Google Scholar
  33. Lake, L.W.: Enhanced Oil Recovery. Prentice-Hall, Englewood Cliffs (1989)Google Scholar
  34. Laplace, P.: Mécanique celeste 10. Supplement to the tenth edition (1806)Google Scholar
  35. Lide, D.R.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2012)Google Scholar
  36. Liu, S.H., Hirasaki, G.K., Miller, C.A.: Favorable attributes of alkaline-surfactant-polymer flooding. SPE J. 12(1), 5–6 (2008)CrossRefGoogle Scholar
  37. Oren, P.E., Billiotte, J., Pinczewski, W.V.: Mobilization of waterflood residual oil by gas injection for water-wet conditions. Soc. Pet. Eng. (1992).  https://doi.org/10.2118/20185-PA Google Scholar
  38. Peksa, A.E., Wolf, K.H.A., Zitha, P.L.J.: Bentheimer sandstone revisited for experimental purposes. Mar. Pet. Geol. 67, 701–719 (2015)CrossRefGoogle Scholar
  39. Rossen, W.R.: Foams in enhanced oil recovery. In: Prud’homme, R.K., Khan, S. (eds.) Foams: Theory Measurements and Applications. Marcel Dekker, New York (1996)Google Scholar
  40. Rossen, W.R., Gauglitz, P.A.: Percolation theory of creation and mobilization of foams in porous media. AIChE 36, 1176–1188 (1990)CrossRefGoogle Scholar
  41. Rossen, W.R., Van Duijn, C.J., Nguyen, Q.P., Vikingstad, A.K.: Injection strategies to overcome gravity segregation in simultaneous gas and liquid injection into homogeneous reservoirs. Soc. Pet. Eng. (2006).  https://doi.org/10.2118/99794-PA Google Scholar
  42. Sebastian, H.M., Lawrence, D.D.: Nitrogen minimum miscibility pressures. Soc. Pet. Eng. (1992).  https://doi.org/10.2118/24134-MS Google Scholar
  43. Shabib-Asl, A., Ayoub, M.A., Alta’ee, A.F., Saaid, I.B.M., Valentim, P.P.J.: Comprehensive review of foam application during foam assisted water alternating gas (FAWAG) method. Res. J. Appl. Sci. Eng. Technol. 8(17), 1896–1904 (2014)Google Scholar
  44. Shandrygin, A., Shelepov, V., Ramazanov, R., Andrianov, N., Klemin, D., Nadeev, A., Yakimchuk, I.: Mechanism of oil displacement during wag in porous media with micro-inhomogeneities. Soc. Pet. Eng. (2015).  https://doi.org/10.2118/176629-MS Google Scholar
  45. Sharma, B., Brigham, W.E., Castanier, L.M.: A Report on CT-Imaging Techniques for Two-Phase and Three-Phase In-Situ Saturation Measurements. Prepared for US Department of Energy, Stanford University (1997)Google Scholar
  46. Shupe, R.D.: Chemical stability of polyacrylamide polymers. J. Pet. Technol. 33(8), 1513–1529 (1981)CrossRefGoogle Scholar
  47. Simjoo, M., Dong, Y., Andrianov, A., Talanana, M., Zitha, P.L.J.: CT scan study of immiscible foam flow in porous media for enhancing oil recovery. Ind. Eng. Chem. Res. 52(18), 6221–6233 (2013)CrossRefGoogle Scholar
  48. Srivastava, M., Zhang, J., Nguyen, Q.P., Pope, G.A.: A systematic study of alkali surfactant gas injection as an enhanced oil recovery technique. Soc. Pet. Eng. (2009).  https://doi.org/10.2118/124752-MS Google Scholar
  49. Szlendak, S.M., Nguyen, N.M., Nguyen, Q.P.: Laboratory investigation of low-tension-gas flooding for improved oil recovery in tight formations. SPE J. 18(5), 851–866 (2013)CrossRefGoogle Scholar
  50. Talebian, S.H., Masoudi, R., Tan, I.M., Zitha, P.L.J.: Foam assisted CO2-EOR: a review of concept, challenges, and future prospects. J. Pet. Sci. Eng. 120, 202–215 (2014)CrossRefGoogle Scholar
  51. Tang, S., Tian, L., Lu, J., Wang, Z., Xie, Y., Yang, X., Lei, X.: A novel low tension foam flooding for improving post-chemical-flood in Shuanghe oilfield. Soc. Pet. Eng. (2014).  https://doi.org/10.2118/169074-MS Google Scholar
  52. Treiber, L.E., Archer, D.L., Owens, W.W.: A laboratory evaluation of the wettability of fifty oil producing reservoirs. SPE J. 12(6), 531–540 (1972)Google Scholar
  53. Vizika, O.: Effect of the spreading coefficient on the efficiency of oil recovery with gravity drainage. In: Enhanced Oil Recovery Symposium, 205th National Meeting. American Chemical Society, Denver, CO, March 28–April 2 (1993)Google Scholar
  54. Wasan, D.T., Shah, S.M., Aderangi, N., Chan, M.S., McNamara, J.J.: Observations on the coalescence behaviour of oil droplets and emulsion stability in enhanced oil recovery. Soc. Pet. Eng. (1978).  https://doi.org/10.2118/6846-PA Google Scholar
  55. Winsor, P.A.: Solvent properties of amphiphilic compounds. Butterworths Scientific Publications. Ltd., London (1954)Google Scholar
  56. Young III, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  57. Zhang, Y.P., Sayegh, S.G., Luo, P., Huang, S.: Experimental investigation of immiscible gas process performance for medium oil. Soc. Pet. Eng. (2010).  https://doi.org/10.2118/133203-PA Google Scholar
  58. Zhu, T., Ogbe, D.O., Khataniar, S.: Improving the foam performance for mobility control and improved sweep efficiency in gas flooding. Ind. Eng. Chem. Res. 43(15), 4413–4421 (2004)CrossRefGoogle Scholar
  59. Zitha, P.L.J., Du, D.X.: A new stochastic bubble population model for foam flow in porous media. Transp. Porous Media 83(3), 603–621 (2010)CrossRefGoogle Scholar
  60. Zitha, P.L.J., Nguyen, Q.P., Currie, P.K., Buijse, M.A.: Coupling of foam drainage and viscous fingering in porous media revealed by X-ray computed tomography. Transp. Porous Media 64(3), 301–313 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Petroleum Engineering DepartmentDelft University of TechnologyDelftThe Netherlands
  2. 2.Petroleum Engineering DepartmentUniversity Teknologi PetronasSeri IskanderMalaysia

Personalised recommendations