Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An Object-Based Shale Permeability Model: Non-Darcy Gas Flow, Sorption, and Surface Diffusion Effects

Abstract

Shale samples consist of two major components: organic matter (OM) and inorganic mineral component (iOM). Each component has its distinct pore network topology and morphology, which necessitates generating a model capable of distinguishing the two media. We constructed an object-based model using the OM and iOM composition of shale samples. In the model, we integrated information such as OM population and size distribution, as well as its associated pore-size distribution. For the iOM part, we used mineralogy and pore-size information derived from X-ray diffraction, scanning electron microscopy, and nitrogen sorption measurements. Our proposed model results in millimeter-scale 2D realizations of shale samples by honoring OM and mineral types, their compositions, shapes, and size distributions. The model can capture heterogeneities smaller than 1 mm. We studied the effects of different gas flow processes and found that Knudsen diffusion and gas slippage dominate the flow, but surface diffusion has little impact on total gas flow.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Akkutlu, I.Y., Fathi, E.: Multiscale gas transport in shales with local kerogen heterogeneities. SPE J. 17(4), 1002–1011 (2012)

  2. Alfi, M., Nasrabadi. H., Banerjee, D.: Confinement effects on phase behavior of hydrocarbon in nanochannels. In: ASME 2015 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers) (2015)

  3. Alfi, M., Nasrabadi, H., Banerjee, D.: Experimental investigation of confinement effect on phase behavior of hexane, heptane and octane using lab-on-a-chip technology. Fluid Phase Equilib. 423, 25–33 (2016)

  4. Biswal, B., Manwart, C., Hilfer, R., Bakke, S., Øren, P.E.: Quantitative analysis of experimental and synthetic microstructures for sedimentary rock. Physica A 273(3), 452–475 (1999)

  5. Biswal, B., Øren, P.E., Held, R.J., Bakke, S., Hilfer, R.: Stochastic multiscale model for carbonate rocks. Phys. Rev. E 75(6), 061303 (2007)

  6. Chen, L., Zhang, L., Kang, Q., Viswanathan, H.S., Yao, J., Tao, W.: Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity. Sci. Rep. 5, 8089 (2015)

  7. Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82(2), 375–384 (2010)

  8. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

  9. Darabi, H., Ettehad, A., Javadpour, F., Sepehrnoori, K.: Gas flow in ultra-tight shale strata. J. Fluid Mech. 710, 641–658 (2012)

  10. Drach, A., Khalighi, A.H., ter Huurne, F.M., Lee, C.-H., Bloodworth, C., Pierce, E.L., Jensen, M.O., Yoganathan, A.P., Sacks, M.S.: Population-averaged geometric model of mitral valve from patient-specific imaging data. J. Med. Dev. 9(3), 030952 (2015)

  11. Drach, A., Khalighi, A.H., Sacks, M.S.: A comprehensive pipeline for multi-resolution modeling of the mitral valve: validation, computational efficiency, and predictive capability. Int. J. Numer. Methods Biomed. Eng. https://doi.org/10.1002/cnm.2921 (2017)

  12. Javadpour, F.: Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 48, 16–21 (2009)

  13. Javadpour, F., Ettehadtavakkol, A.: Gas transport processes in shale. In: Fundamentals of Gas Shale Reservoirs, pp. 245–266 (2015)

  14. Javadpour, F., McClure, M., Naraghi, M.E.: Slip-corrected liquid permeability and its effect on hydraulic fracturing and fluid loss in shale. Fuel 160, 549–559 (2015)

  15. Katagiri, J., Matsushima, T., Yamada, Y.: Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granul. Matter. 12(5), 491–497 (2010)

  16. Kelly, S., El-Sobky, H., Torres-Verdín, C., Balhoff, M.T.: Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 95, 302–316 (2016)

  17. Khalighi, A.H., Drach, A., ter Huurne, F.M., Lee, C.-H., Bloodworth, C., Pierce, E.L., Jensen, M.O., Yoganathan, A.P., Sacks, M.S.: A comprehensive framework for the characterization of the complete mitral valve geometry for the development of a population-averaged model. In: International Conference on Functional Imaging and Modeling of the Heart, pp. 164–171. Springer (2015)

  18. Khalighi, A.H., Drach, A., Bloodworth IV, C.H., Pierce, E.L., Yganathan, A.P., Gorman, R.C., Gorman III, J.H., Sacks, M.S.: Mitral valve chordae tendineae: topological and geometrical characterization. Ann. Biomed. Eng. 45(2), 378–393 (2017)

  19. Khalighi, A. H., Drach, A., Gorman, R. C., Gorman, J. H., Sacks, M. S.: Multi-resolution geometric modeling of the mitral heart valve leaflets. In: Biomechanics and Modeling in Mechanobiology, pp. 1–16 (2017)

  20. Klaver, J., Desbois, G., Urai, J.L., Littke, R.: BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. Int. J. Coal Geol. 103, 12–25 (2012)

  21. Ko, L.T., Loucks, R.G., Ruppel, S.C., Zhang, T., Peng, S.: Origin and characterization of Eagle Ford pore networks in the south Texas Upper Cretaceous shelf. AAPG Bull. 101, 387–418 (2017)

  22. Loucks, R.G., Reed, R.M., Ruppel, S.C., Hammes, U.: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 96(6), 1071–1098 (2012)

  23. Mehmani, A., Prodanović, M., Javadpour, F.: Multiscale, multiphysics network modeling of shale matrix gas flows. Transp. Porous Media 99(2), 377–390 (2013)

  24. Milliken, K.L., Ergene, S.M., Ozkan, A.: Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, south Texas. USA. Sediment. Geol. 339, 273–288 (2016)

  25. Naraghi, M.E.: 3-D reconstruction of porous media and rock characterization. In: SPE Annual Technical Conference and Exhibition. Soc. Pet. Eng. (2016)

  26. Naraghi, M.E., Javadpour, F.: A stochastic permeability model for the shale-gas systems. Int. J. Coal Geol. 140, 111–124 (2015)

  27. Naraghi, M.E., Javadpour, F.: Langmuir slip-Langmuir sorption stochastic permeability model of shale. In: Unconventional Resources Technology Conference, San Antonio, Texas, 1–3 August 2016. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Soc. Pet. Eng. 323–341 (2016)

  28. Naraghi, M.E., Spikes, K., Srinivasan, S.: 3-D reconstruction of porous media from a 2-D section and comparisons of transport and elastic properties. In: SPE Western Regional Meeting. Soc. Pet. Eng. (2016)

  29. Naraghi, M.E., Spikes, K., Srinivasan, S.: 3D Reconstruction of porous media from a 2D section and comparisons of transport and elastic properties. SPE Reserv. Eval. Eng. 20(02), 342–352 (2017)

  30. Rezaveisi, M., Javadpour, F., Sepehrnoori, K.: Modeling chromatographic separation of produced gas in shale wells. Int. J. Coal Geol. 121, 110–122 (2014)

  31. Roberts, J.N., Schwartz, L.M.: Grain consolidation and electrical conductivity in porous media. Phys. Rev. B 31(9), 5990 (1985)

  32. Sakhaee-pour, A., Bryant, S.: Gas permeability of shale. SPE Reserv. Eval. Eng. 15(4), 401–409 (2012)

  33. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter. 11(4), 221–236 (2009)

  34. Shabro, V., Torres-Verdín, C., Javadpour, F., Sepehrnoori, K.: Finite-difference approximation for fluid-flow simulation and calculation of permeability in porous media. Transp. Porous Media 94(3), 775–793 (2012)

  35. Singh, H., Javadpour, F.: Langmuir slip-Langmuir sorption permeability model of shale. Fuel 164, 28–37 (2016)

  36. Singh, H., Javadpour, F., Ettehadtavakkol, A., Darabi, H.: Nonempirical apparent permeability of shale. SPE Reserv. Eval. Eng. 17(3), 414–424 (2014)

  37. Spikes, K.T., Naraghi, M.E.: Deformation of digital images and trends of porosity versus numerical elastic properties. In: International Geophysical Conference, Qingdao, China, 17–20 April 2017, pp. 1119–1123. Society of Exploration Geophysicists and Chinese Petroleum Society (2017)

  38. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter. 13(4), 417–428 (2011)

  39. Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale and multiresolution modeling of shales and their flow and morphological properties. Sci. Rep. (Nat) 5, 16373 (2015). https://doi.org/10.1038/srep16373. Nov. 12

  40. Tahmasebi, P., Javadpour, F., Sahimi, M.: Three dimensional stochastic characterization of shale SEM images. Transp. Porous Media 110, 521–531 (2015b). https://doi.org/10.1007/s11242-015-0570-1

  41. Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale study for stochastic characterization of shale samples. Adv. Water Resour. 89, 91–103 (2016). https://doi.org/10.1016/j.advwaters.2016.01.008

  42. Tahmasebi, P., Sahimi, M., Andrade, J.E.: Image-based modeling of granular porous media. Geophys. Res. Lett. 44, 4738–4746 (2017)

  43. Yang, B., Kang, Y., You, L., Li, X., Chen, Q.: Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter. Fuel 181, 793–804 (2016)

Download references

Acknowledgements

This work was supported partly by the NanoGeosciences laboratory and by the Mudrock Systems Research Laboratory (MSRL) consortium at the Bureau of Economic Geology, The University of Texas at Austin. MSRL member companies are Anadarko, BP, Cenovus, Centrica, Chesapeake, Cima, Cimarex, Chevron, Concho, ConocoPhillips, Cypress, Devon, Encana, Eni, EOG, EXCO, ExxonMobil, Hess, Husky, Kerogen, Marathon, Murphy, Newfield, Penn Virginia, Penn West, Pioneer, Samson, Shell, Statoil, Talisman, Texas American Resources, The Unconventionals, U.S. Enercorp, Valence, and YPF. We appreciate Drs S. Ruppel and R. Reed’s instructive comments. Susie Doenges edited the manuscript. Publication was authorized by the Director, Bureau of Economic Geology.

Author information

Correspondence to Farzam Javadpour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naraghi, M.E., Javadpour, F. & Ko, L.T. An Object-Based Shale Permeability Model: Non-Darcy Gas Flow, Sorption, and Surface Diffusion Effects. Transp Porous Med 125, 23–39 (2018). https://doi.org/10.1007/s11242-017-0992-z

Download citation

Keywords

  • Gas flow in shale
  • Nanopore
  • Stochastic
  • Reconstruction of porous media