Advertisement

Transport in Porous Media

, Volume 121, Issue 3, pp 621–641 | Cite as

Stable Propagation of Saturation Overshoots for Two-Phase Flow in Porous Media

  • M. Schneider
  • T. Köppl
  • R. Helmig
  • R. Steinle
  • R. Hilfer
Article
  • 245 Downloads

Abstract

Propagation of saturation overshoots for two-phase flow of immiscible and incompressible fluids in porous media is analyzed using different computational methods. In particular, it is investigated under which conditions a given saturation overshoot remains stable while moving through a porous medium. Two standard formulations are employed in this investigation, a fractional flow formulation and a pressure–saturation formulation. Neumann boundary conditions for pressure are shown to emulate flux boundary conditions in homogeneous media. Gravity driven flows with Dirichlet boundary conditions for pressure that model infiltration into heterogeneous media with position-dependent permeability are found to exhibit pronounced saturation overshoots very similar to those seen in experiment.

Keywords

Two-phase flow Hysteresis Overshoot Stability 

Notes

Acknowledgements

We would like to thank Mike Celia for his comments and many fruitful discussions. This work was partially supported by the Cluster of Excellence in Simulation Technology (EXC 310/2), the Internationales Graduiertenkolleg NUPUS and the Deutsche Forschungsgemeinschaft.

References

  1. Alt, H., Luckhaus, S.: Quasilinear elliptic–parabolic differential equations. Math. Z. 183, 311 (1983)CrossRefGoogle Scholar
  2. Alt, H., Luckhaus, S., Visintin, A.: On nonstationary flow through porous media. Ann. Mat. Pura Appl. 136, 303 (1984)CrossRefGoogle Scholar
  3. Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (Dune). Kybernetika 46(2), 294–315 (2010)Google Scholar
  4. Beliaev, A.Y., Hassanizadeh, S.M.: A theoretical model of hysteresis and dynamic effects in the capillary relation for two-phase flow in porous media. Transp. Porous Media 43(3), 487–510 (2001)CrossRefGoogle Scholar
  5. Boudet, H., Clarke, C., Bugden, D., Maibach, E., Roser-Renouf, C., Leiserowitz, A.: Fracking controversy and communication: using national survey data to understand public perceptions of hydraulic fracturing. Energy Policy 65, 57–67 (2014)CrossRefGoogle Scholar
  6. Briggs, J., Katz, D.: Drainage of water from sand in developing aquifer storage. Paper SPE1501 presented 1966 at the 41st Annual Fall Meeting of the SPE, Dallas, USA (1966)Google Scholar
  7. Charbeneau, R.: Groundwater Hydraulics and Pollution Transport. Prentice Hall, Upper Saddle River (2000)Google Scholar
  8. Cueto-Felgueroso, L., Juanes, R.: Stability analysis of a phase-field model of gravity-driven unsaturated flow through porous media. Phys. Rev. E 79, 036301 (2009)CrossRefGoogle Scholar
  9. DiCarlo, D.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40, W04215 (2004)CrossRefGoogle Scholar
  10. DiCarlo, D.: Stability of gravity-driven multiphase flow in porous media: 40 years of advancements. Water Resour. Res. 49, 4531 (2013)CrossRefGoogle Scholar
  11. DiCarlo, D., Mirzaei, M., Aminzadeh, B., Dehghanpur, H.: Fractional flow approach to saturation overshoot. Transp. Porous Media 91, 955 (2012)CrossRefGoogle Scholar
  12. Doster, F., Zegeling, P., Hilfer, R.: Numerical solutions of a generalized theory for macroscopic capillarity. Phys. Rev. E 81, 036307 (2010)CrossRefGoogle Scholar
  13. Dullien, F.A.L.: Porous Media—Fluid Transport and Pore Structure. Academic Press, San Diego (1992)Google Scholar
  14. Egorov, A., Dautov, R., Nieber, J., Sheshukov, A.: Stability analysis of gravity-driven infiltrating flow. Water Resour. Res. 39, 1266 (2003)CrossRefGoogle Scholar
  15. Eliassi, M., Glass, R.: On the continuum-scale modeling of gravity-driven fingers in unsaturated porous media: The inadequacy of the Richards equation with standard monotonic constitutive relations and hysteretic equations of state. Water Resour. Res. 37, 2019 (2001)CrossRefGoogle Scholar
  16. Eliassi, M., Glass, R.J.: On the porous-continuum modeling of gravity-driven fingers in unsaturated materials: Extension of standard theory with a hold-back-pile-up effect. Water Resour. Res. 38(11), 16-1–16-11 (2002)Google Scholar
  17. Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence (1998)Google Scholar
  18. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMux: DUNE for multi-\(\{\)phase, component, scale, physics,.\(\}\) flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011)CrossRefGoogle Scholar
  19. Fritz, S.: Experimental Investigations of Water Infiltration into Unsaturated Soil—Analysis of Dynamic Capillarity Effects. Master’s thesis, Universität Stuttgart, Department of Hydromechanics and Modelling of Hydrosystems (2012)Google Scholar
  20. Fürst, T., Vodak, R., Sir, M., Bil, M.: On the incompatibility of Richards’ equation and finger-like infiltration in unsaturated homogeneous porous media. Water Resour. Res. 45, W03408 (2009)CrossRefGoogle Scholar
  21. Glass, R., Steenhuis, T., Parlange, J.: Mechanism for finger persistence in homogeneous unsaturated, porous media: theory and verification. Soil Sci. 148, 60 (1989)CrossRefGoogle Scholar
  22. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)CrossRefGoogle Scholar
  23. Hilfer, R., Doster, F., Zegeling, P.: Nonmonotone saturation profiles for hydrostatic equilibrium in homogeneous media. Vadose Zone J. (2012).  https://doi.org/10.2136/vzj2012.0021
  24. Hilfer, R., Steinle, R.: Saturation overshoot and hysteresis for twophase flow in porous media. Eur. Phys. J. Spec. Top. 223(11), 2323–2338 (2014)CrossRefGoogle Scholar
  25. Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM: A C++ library for complex physics simulations. In: International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, pp. 1–20 (2007)Google Scholar
  26. Kalaydjian, F.J-M. et al. Dynamic capillary pressure curve for water/oil displacement in porous media: theory vs. experiment. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1992)Google Scholar
  27. Koch, J., Rätz, A., Schweizer, B.: Two-phase flow equations with a dynamic capillary pressure. Eur. J. Appl. Math. 24(01), 49–75 (2013)CrossRefGoogle Scholar
  28. Lamacz, A., Rätz, A., Schweizer, B.: A well-posed hysteresis model for flows in porous media and applications to fingering effects. Adv. Math. Sci. Appl. 21(01), 33–64 (2011)Google Scholar
  29. Luckner, L., Van Genuchten, M.T., Nielsen, D.R.: A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193 (1989)CrossRefGoogle Scholar
  30. Manthey, S., Hassanizadeh, S.M., Helmig, R., Hilfer, R.: Dimensional analysis of two-phase flow including a rate-dependent capillary pressure–saturation relationship. Adv. Water Resour. 31(9), 1137–1150 (2008)CrossRefGoogle Scholar
  31. Middendorf, J.: Zur Beschreibung des kapillaren Flüssigkeitstransports in Papier. Ph.D. thesis, Fakultät für Maschinenbau und Verfahrenstechnik, Technische Universität Chemnitz, Germany (2000)Google Scholar
  32. Nieber, J.L., Dautov, R.Z., Egorov, A.G., Sheshukov, A.Y.: Dynamic capillary pressure mechanism for instability in gravity-driven flows; review and extension to very dry conditions. Transp. Porous Media 58(1–2), 147–172 (2005)CrossRefGoogle Scholar
  33. Otto, F.: L\(^{1}\)-contraction and uniqueness for quasilinear elliptic–parabolic equations. J. Differ. Equ. 131, 20 (1996)CrossRefGoogle Scholar
  34. Rätz, A., Schweizer, B.: Hysteresis models and gravity fingering in porous media. ZAMM J. Appl. Math. Mech. 94(7–8), 645–654 (2014)CrossRefGoogle Scholar
  35. Schröder, N., Javaux, M., Vanderborght, J., Steffen, B., Vereecken, H.: Effect of root water and solute uptake on apparent soil dispersivity: A simulation study. Vadose Zone J. 11(3), 1–16 (2012)CrossRefGoogle Scholar
  36. Shiozawa, S., Fujimaki, H.: Unexpected water content profiles under flux-limited one-dimensional downward infiltration in initially dry granular media. Water Resour. Res. 40(7), W07404 (2004)CrossRefGoogle Scholar
  37. Steinle, R., Hilfer, R.: Influence of initial conditions on propagation, growth and decay of saturation overshoot. Transp. Porous Media 111(2), 369–380 (2016)CrossRefGoogle Scholar
  38. Steinle, R., Hilfer, R.: Hysteresis in relative permeabilities suffices for propagation of saturation overshoot: A quantitative comparison with experiment. Phys. Rev. E 95, 043112 (2017)CrossRefGoogle Scholar
  39. van Duijn, C., Fan, Y., Peletier, L., Pop, I.: Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media. Nonlinear Anal. Real World Appl. 14, 1361–1383 (2013)CrossRefGoogle Scholar
  40. Van Duijn, C.J., Peletier, L.A., Pop, I.S.: A new class of entropy solutions of the Buckley–Leverett equation. SIAM J. Math. Anal. 39(2), 507–536 (2007)CrossRefGoogle Scholar
  41. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRefGoogle Scholar
  42. Weishaupt, K., Beck, M., Becker, B., Class, H., Fetzer, T., Flemisch, B., Futter, G., Gläser, D., Grüninger, C., Hommel, J., Kissinger, A., Koch, T., Schneider, M., Schröder, N., Schwenck, N., Seitz, G.: Dumux 2.9.0 (2016)Google Scholar
  43. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRefGoogle Scholar
  44. Xiong, Y.: Flow of water in porous media with saturation overshoot: a review. J. Hydrol. 510, 353–362 (2014)CrossRefGoogle Scholar
  45. Youngs, E.G.: Redistribution of moisture in porous materials after infiltration: 2. Soil Sci. 86, 202–207 (1958)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Hydromechanik und HydrosystemmodellierungStuttgartGermany
  2. 2.Institut für ComputerphysikStuttgartGermany

Personalised recommendations