Transport in Porous Media

, Volume 120, Issue 1, pp 207–225 | Cite as

Influence of Resolution of Rasterized Geometries on Porosity and Specific Surface Area Exemplified for Model Geometries of Porous Media

  • Tobias HeidigEmail author
  • Thomas Zeiser
  • Hannsjörg Freund


Rasterized representations of geometrical structures are commonplace in science and engineering. They are used in analysis and design of complex geometrical structures; however, the introduced errors for volume and surface estimation are often not considered in detail. To provide insight and information on these effects, in this study model geometries of porous media (simple cubic, body-centered cubic, face-centered cubic) are used to investigate the influence of resolution (voxels per length) on volume and surface approximation. The numerically obtained results are compared with analytical solutions for porosity and specific surface area. Small deviations from the real volume are found for the rasterized geometry at reasonable resolution. For the estimated surface area, in contrast, when using marching cubes considerable deviations from the analytically calculated surface area are found even at relatively fine resolutions. These findings are especially important for the use of rasterized voxel data as input for engineering correlations to estimate characteristic physical transport properties such as pressure drop or effective heat transport.


Voxel Raster data Porosity Specific surface area Additive manufacturing 

List of Symbols


Area [\(\hbox {L}^{2}\)]


Overlap [%]


Length [L]


Radius including overlap [L]


Surface area [L\(^{2}\)]


Volume [L\(^{3}\)]

\(\epsilon \)

Porosity [-]



Analytically calculated real value of ideal model structure


Numerically calculated approximation




Sphere–sphere (intersection)


Spherical cap






Case for \(R-h=1.0\)



Body-centered cubic


Face-centered cubic


Simple cubic


Neighboring spheres share two coordinates


Neighboring spheres share one coordinate


Neighboring spheres share no coordinate



The authors gratefully acknowledge the funding of the German Research Foundation (DFG), which, within the framework of its “Excellence Initiative”, supports the Cluster of Excellence “Engineering of Advanced Materials” at the Friedrich-Alexander-Universität Erlangen-Nürnberg (

Supplementary material

11242_2017_916_MOESM1_ESM.pdf (975 kb)
Supplementary material 1 (pdf 974 KB)


  1. Adler, P.M., Jacquin, C.G., Quiblier, J.A.: Flow in simulated porous media. Int. J. Multiphas. Flow 16, 691–712 (1990)CrossRefGoogle Scholar
  2. Andersson, L.E., Larsson, M.: Device and arrangement for producing a three-dimensional object. US patent 7,537,722 May 26 (2009)Google Scholar
  3. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware Inc., Clifton Park (2015)Google Scholar
  4. Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., Tronconi, E.: Heat transfer properties of metal foam supports for structured catalysts: wall heat transfer coefficient. Catal. Today 216, 121–134 (2013)CrossRefGoogle Scholar
  5. Chkhartishvili, L.S.: Volume of the intersection of three spheres. Math. Notes 69, 421–428 (2011)CrossRefGoogle Scholar
  6. Coeurjolly, D., Flin, F., Teytaud, O., Tougne, L.: Multigrid convergence and surface area estimation. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging: 11th International Workshop on Theoretical Foundations of Computer Vision. Dagstuhl Castle, Germany, pp. 101-119. Springer, Berlin (2003)Google Scholar
  7. Dietrich, B.: Heat transfer coefficients for solid ceramic sponges—experimental results and correlation. Int. J. Heat Mass Transf. 61, 627–637 (2013)CrossRefGoogle Scholar
  8. Edouard, D., Lacroix, M., Huu, C.P., Luck, F.: Pressure drop modeling on SOLID foam: state-of-the art correlation. Chem. Eng. J. 144, 299–311 (2008)CrossRefGoogle Scholar
  9. Eshraghi, S., Das, S.: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6, 2467–2476 (2010)CrossRefGoogle Scholar
  10. Fredrich, J.T.: 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes. Phys. Chem. Earth Part A 24, 551–561 (1999)CrossRefGoogle Scholar
  11. Garrido, G.I., Patcas, F.C., Lang, S., Kraushaar-Czarnetzki, B.: Mass transfer and pressure drop in ceramic foams: a description for different pore sizes and porosities. Chem. Eng. Sci. 63, 5202–5217 (2008)CrossRefGoogle Scholar
  12. Genty, A., Pot, V.: Numerical calculation of effective diffusion in unsaturated porous media by the TRT lattice Boltzmann method. Transp. Porous Med. 105, 391–410 (2014)CrossRefGoogle Scholar
  13. Gladden, L.F., Alexander, P.: Applications of nuclear magnetic resonance imaging in process engineering. Meas. Sci. Technol. 7, 423–435 (1996)CrossRefGoogle Scholar
  14. Gladden, L.F.: Nuclear magnetic resonance in chemical engineering: principles and applications. Chem. Eng. Sci. 49, 3339–3408 (1994)CrossRefGoogle Scholar
  15. Große, J., Dietrich, B., Martin, H., Kind, M., Vicente, J., Hardy, E.H.: Volume image analysis of ceramic sponges. Chem. Eng. Technol. 31, 307–314 (2008)CrossRefGoogle Scholar
  16. Heinl, P., Rottmair, A., Körner, C.: Cellular titanium by selective electron beam melting. Adv Eng. Mater. 9, 360–364 (2007)CrossRefGoogle Scholar
  17. Inayat, A., Klumpp, M., Lämmermann, M., Freund, H., Schwieger, W.: Development of a new pressure drop correlation for open-cell foams based completely on theoretical grounds: taking into account strut shape and geometric tortuosity. Chem. Eng. J. 287, 704–719 (2016)CrossRefGoogle Scholar
  18. Inayat, A., Freund, H., Schwab, A., Zeiser, T., Schwieger, W.: Predicting the specific surface area and pressure drop of reticulated ceramic foams used as catalyst support. Adv. Eng. Mater. 13, 990–995 (2011)CrossRefGoogle Scholar
  19. Jin, G., Torres-Verdín, C., Toumelin, E.: Comparison of NMR simulations of porous media derived from analytical and voxelized representations. J. Magn. Reson. 200, 313–320 (2009)CrossRefGoogle Scholar
  20. Kanamori, K., Nakanishi, K., Hirao, K., Jinnai, H.: Three-dimensional observation of phase-separated siloxane sol–gel structures in confined spaces using laser scanning confocal microscopy (LSCM). Colloids Surf. A 241, 215–224 (2004)CrossRefGoogle Scholar
  21. Kaneda, M., Matsushima, Y., Suga, K.: Numerical simulation for heat and fluid flow through porous media. In: ASME/JSME 2011 8th Thermal Engineering Joint Conference, pp. 1–7. American Society of Mechanical Engineers, New York (2011)Google Scholar
  22. Klumpp, M., Inayat, A., Schwerdtfeger, J., Körner, C., Singer, R.F., Freund, H., Schwieger, W.: Periodic open cellular structures with ideal cubic cell geometry: effect of porosity and cell orientation on pressure drop behavior. Chem. Eng. J. 242, 364–378 (2014)CrossRefGoogle Scholar
  23. Krishnan, S., Murthy, J.Y., Garimella, S.V.: Direct simulation of transport in open-cell metal foam. J. Heat Transf. T. ASME 128, 793–799 (2006)CrossRefGoogle Scholar
  24. Kuwahara, F., Fumoto, Y.: The effective pore diameter of a three-dimensional numerical model for estimating heat and fluid flow characteristics in metal foams. Open Transp. Phenom. J. 5, 1–6 (2013)CrossRefGoogle Scholar
  25. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)CrossRefGoogle Scholar
  26. Legland, D., Arganda-Carreras, I., Andrey, P.: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016)Google Scholar
  27. Lenoir, A., Malgouyres, R., Revenu, M.: Fast computation of the normal vector field of the surface of a 3-D discrete object. In: International Conference on Discrete Geometry for Computer Imagery, pp. 101–112. Springer, Berlin (1996)Google Scholar
  28. Lindemann, F.: Ueber die Zahl \(\pi \). Math. Ann. 20, 213–225 (1882)CrossRefGoogle Scholar
  29. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163–169. ACM, New York (1987)Google Scholar
  30. Lustig, R.: Geometry of four hard fused spheres in an arbitrary spatial configuration. Mol. Phys. 59, 195–207 (1986)CrossRefGoogle Scholar
  31. Mantz, H., Jacobs, K., Mecke, K.: Utilizing Minkowski functionals for image analysis: a marching square algorithm. J. Stat. Mech. Theory Exp. 12, P12015 (2008)CrossRefGoogle Scholar
  32. Marcus, H.L., Beaman, J.J., Barlow, J.W., Bourell, D.L.: From computer to component in 15 minutes: the integrated manufacture of three-dimensional objects. JOM J. Miner. Met. Mater. Soc. 42, 8–10 (1990)CrossRefGoogle Scholar
  33. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26, 1277–1294 (1993)CrossRefGoogle Scholar
  34. Peng, Y., Richardson, J.T.: Properties of ceramic foam catalyst supports: one-dimensional and two-dimensional heat transfer correlations. Appl. Catal. A Gen. 266, 235–244 (2004)CrossRefGoogle Scholar
  35. Pham, D.T., Gault, R.S.: A comparison of rapid prototyping technologies. Int. J. Mach. Tool. Manuf. 38, 1257–1287 (1998)CrossRefGoogle Scholar
  36. Powell, M.J.D.: The volume internal to three intersecting hard spheres. Mol. Phys. 7, 591–592 (1964)CrossRefGoogle Scholar
  37. Rajon, D.A., Patton, P.W., Shah, A.P., Watchman, C.J., Bolch, W.E.: Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry. Med. Phys. 29, 682–693 (2002)CrossRefGoogle Scholar
  38. Rajon, D.A., Jokisch, D.W., Patton, P.W., Shah, A.P., Bolch, W.E.: Voxel size effects in three-dimensional nuclear magnetic resonance microscopy performed for trabecular bone dosimetry. Med. Phys. 27, 2624–2635 (2000)CrossRefGoogle Scholar
  39. Richardson, J.T., Peng, Y., Remue, D.: Properties of ceramic foam catalyst supports: pressure drop. Appl. Catal. A Gen. 204, 19–32 (2000)CrossRefGoogle Scholar
  40. Rowlinson, J.: The triplet distribution function in a fluid of hard spheres. Mol. Phys. 6, 517–524 (1963)CrossRefGoogle Scholar
  41. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)CrossRefGoogle Scholar
  42. Stampfl, J., Fouad, H., Seidler, S., Liska, R., Schwager, F., Woesz, A., Fratzl, P.: Fabrication and moulding of cellular materials by rapid prototyping. Int. J. Mater. Prod. Technol. 21, 285–296 (2004)CrossRefGoogle Scholar
  43. Suga, K., Nishio, Y.: Three dimensional microscopic flow simulation across the interface of a porous wall and clear fluid by the lattice Boltzmann method. Open Transp. Phenom. J. 1, 35–44 (2009)CrossRefGoogle Scholar
  44. Suleiman, A.S., Dukhan, N.: Long-domain simulation of flow in open-cell mesoporous metal foam and direct comparison to experiment. Micropor. Mesopor. Mater. 196, 104–114 (2014)CrossRefGoogle Scholar
  45. Thovert, J.-F., Yousefian, F., Spanne, P., Jacquin, C.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63, 061307 (2001)CrossRefGoogle Scholar
  46. Trier, Ø.D., Jain, A.K.: Goal-directed evaluation of binarization methods. IEEE Trans. Pattern. Anal. 17, 1191–1201 (1995)CrossRefGoogle Scholar
  47. Vicente, J., Topin, F., Daurelle, J.V.: Open celled material structural properties measurement: from morphology to transport properties. Mater. Trans. 47, 2195–2202 (2006)CrossRefGoogle Scholar
  48. Wildenschild, D., Hopmans, J.W., Vaz, C.M.P., Rivers, M.L., Rikard, D., Christensen, B.S.B.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267, 285–297 (2002)CrossRefGoogle Scholar
  49. Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., Das, S.: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26, 4817–4827 (2005)CrossRefGoogle Scholar
  50. Young, P.G., Beresford-West, T.B.H., Coward, S.R.L., Notarberardino, B., Walker, B., Abdul-Aziz, A.: An efficient approach to converting three-dimensional image data into highly accurate computational models. Philos. Trans. R. Soc. London, Ser. A. 366, 3155–3173 (2008)CrossRefGoogle Scholar
  51. Yu, Q., Thompson, B.E., Straatman, A.G.: A unit cube-based model for heat transfer and fluid flow in porous carbon foam. J. Heat. Transf. T. ASME 128, 352–360 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Regionales Rechenzentrum Erlangen, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations