Advertisement

Transport in Porous Media

, Volume 117, Issue 1, pp 69–102 | Cite as

Addressing the Influence of a Heterogeneous Matrix on Well Performance in Fractured Rocks

  • R. RaghavanEmail author
  • C. Chen
Article

Abstract

We address the influences of heterogeneity and complex geology of the matrix of fractured rocks on transient flow. Fractional constitutive flux laws reflect the stochastic framework that we consider. We model transient diffusion in both the matrix and fracture systems in terms of a continuous time random walk. Our procedure is particularly suited to address a complex geology that may exist on a number of scales and which may include dead ends and discontinuities. The performance of a horizontal well produced through arbitrarily located, multiple hydraulic fractures with distinct properties (length, width, permeability) forms the basis for our thesis. The pressure distribution in a rectangular drainage region where the well may be placed arbitrarily is expressed in terms of the Laplace transformation. The required solutions are obtained numerically. The focus of our work is on long-term behaviors for production at a constant pressure. In addition to numerical solutions, asymptotic results that provide information on the structure of the solutions are presented. Agreement between the asymptotic and numerical solutions is excellent. We show that long-term responses are governed by two distinct, two-parameter Mittag–Leffler functions and are an outcome of the complexities we desire to model in both the matrix and fracture systems. As a consequence, power-law behaviors that reflect the heterogeneity inherent in the system define long-time expectations. We show that the new solutions we derive do reduce to those of classical diffusion; that is, results corresponding to classical diffusion are a subset of the new results obtained here. Our results are particularly suited to model transient flow in shale reservoirs.

Keywords

Multiporosity Rate decline Pressure behavior Fractured rocks Hydraulic fractures Fractured horizontal wells Fractional diffusion Anomalous diffusion Mittag–Leffler function Power-law decline 

List of symbols

A

Drainage area (\(\hbox {L}^2\))

\(\tilde{B}\)

See Eq. (78)

\( \tilde{C}\)

See Eq. (84)

c

Compressibility (\(\mathrm{L T}^2/\mathrm{M}\))

\(C_A\)

Shape factor

D

Distance between the outer fractures (L)

\(E_{\alpha , \beta }( z) \)

Mittag–Leffler function; see (Eq. 57)

f(s)

Function defined in Eq. (24)

h

Thickness (L)

\(K_{\nu }(z)\)

Modified Bessel function of the second kind of order \(\nu \)

k

Permeability (\(\hbox {L}^2\))

\(k_\mathrm{F} \)

Permeability of hydraulic fracture (\(\hbox {L}^2\))

\(\tilde{k}\)

See Eq. (3)

\(I_{\nu }(z)\)

Modified Bessel function of the first kind of order \(\nu \)

\(L_\mathrm{f} \)

One half of the length of hydraulic fracture (L)

\({{{\mathrm{\mathcal {L}}}}}\)

Laplace transform

\(\ell \)

Reference length (L)

n

Number of fractures

p

Pressure (\(\hbox {M}/\hbox {L}/\hbox {T}^2\))

q

Rate (\(\mathrm{L}^3/T\))

t

Time (T)

s

Laplace variable (1/T)

xy

Coordinates (L)

w

Width (L)

\(\alpha \)

Exponent; see Eq. (2)

\(\Gamma (x)\)

Gamma function

\(\gamma \)

Euler’s constant (\(0.5772 \ldots \) )

\(\sigma \)

Pseudoskin factor; single fracture

\(\eta \)

Diffusivity; various

\(\tilde{\eta }\)

‘Diffusivity’; see Eq. (16) (\(\mathrm{L}^{2}/\mathrm{T}^\alpha \))

\(\vartheta \)

See Eq. (1)

\(\lambda \)

Mobility (L/T/M)

\(\mu \)

Viscosity (M/L/T)

\(\nu \)

Exponent; see Eq. (82)

\(\phi \)

Porosity (\(\hbox {L}^3/\hbox {L}^3\))

Subscripts

D

Dimensionless

e

Boundary

f

Natural fracture system

F

Hydraulic fracture

i

Initial

m

Matrix

t

Total

w

Well

Superscripts

Laplace transform

References

  1. Apaydin, O.G., Ozkan, E., Raghavan, R.: Effect of discontinuous microfractures on ultratight matrix permeability of a dual-porosity medium. SPE Reserv. Eval. Eng. 15(4), 473–485. Society of Petroleum Engineers (2012). doi: 10.2118/147391-PA
  2. Barenblatt, G.I., Zheltov, YuP, Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)CrossRefGoogle Scholar
  3. Belayneh, M., Masihi, M., Matthäi, S. K., King, P. R.: Prediction of vein connectivity using the percolation approach: model test with field data. J. Geophys. Eng. 33, 219–229 (2006) http://stacks.iop.org/1742-2140/3/i=3/a=003
  4. Beier, R.A.: Pressure-transient model for a vertically fractured well in a fractal reservoir. SPE Form. Eval. 9(2), 122–128 (1994). doi: 10.2118/20582-PA CrossRefGoogle Scholar
  5. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006). doi: 10.1029/2005RG000178 CrossRefGoogle Scholar
  6. Bisdom, K., Bertotti, G., Nick, H.M.: The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks. J. Geophys. Res. Solid Earth 121(5), 2169–9356 (2016). doi: 10.1002/2015JB012657 CrossRefGoogle Scholar
  7. Bisquert, J., Compte, A.: Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 499, 112–120 (2001)CrossRefGoogle Scholar
  8. Campos, D., Méndez, V., Fort, J.: Description of diffusive and propagative behavior on fractals. Phys. Rev. E 69, 031115 (2004)CrossRefGoogle Scholar
  9. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)CrossRefGoogle Scholar
  10. Cacas, M.C., Daniel, J.M., Letouzey, J.: Nested geological modelling of naturally fractured reservoirs. Pet. Geosci. 7, S43–S52 (2001). doi: 10.1144/petgeo.7.S.S43 CrossRefGoogle Scholar
  11. Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerá, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6(1), 178–190 (1998)CrossRefGoogle Scholar
  12. Chen, C. C.: A Study of Naturally Fractured Reservoirs, M.S. Thesis, University of Tulsa, Tulsa, OK (1982)Google Scholar
  13. Chen, C.C., Raghavan, R.: A multiply-fractured horizontal well in a rectangular drainage region. SPE J. 2(4), 455–465 (1997). doi: 10.2118/37072-PA CrossRefGoogle Scholar
  14. Chen, C., Raghavan, R.: On some characteristic features of fractured-horizontal wells and conclusions drawn thereof. SPE Reserv. Eval. Eng. 16(1), 19–28 (2013). doi: 10.2118/163104-PA CrossRefGoogle Scholar
  15. Chen, C., Raghavan, R.: Transient flow in a linear reservoir for space-time fractional diffusion. J. Petrol. Sci. Eng. 128, 194–202 (2015)Google Scholar
  16. Chen, C.C., Serra, K., Reynolds, A.C., Raghavan, R.: Pressure transient analysis methods for bounded naturally fractured reservoirs. Soc. Petrol. Eng. J. 25(3), 451–464 (1985). doi: 10.2118/11243-PA
  17. Chen, H.Y., Poston, S.W., Raghavan, R.: An application of the product solution principle for instantaneous source and Green’s functions. SPE Form. Eval. 6(2), 161–167 (1991). doi: 10.2118/20801-PA
  18. Cinco-Ley, H., Meng, H.-Z.: Pressure transient analysis of wells with finite conductivity vertical fractures in double porosity reservoirs. Soc. Petrol. Eng. (1988). doi: 10.2118/18172-MS Google Scholar
  19. Dassas, Y., Duby, Y.: Diffusion toward fractal interfaces and linear sweep voltammetric techniques. J. Electrochem. Soc. 142(12), 4175–4180 (1995)CrossRefGoogle Scholar
  20. de Swaan-O, A.: Analytical solutions for determining naturally fractured reservoir properties by well testing. Soc. Pet. Eng. J. 16(3), 117–122 (1976). doi: 10.2118/5346-PA CrossRefGoogle Scholar
  21. Dontsov, K.M., Boyrchuk, B.T.: Effect of characteristics of fractured media on pressure buildup behavior. Izv. Vuz Oil Gas N1, 42–46 (1971). (in Russian)Google Scholar
  22. Erdelyi, A., Magnus, W. F., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. McGraw-Hill, New York, Chapter 18: Miscellaneous Functions, vol. 3, pp. 206–227 (1955)Google Scholar
  23. Fomin, S., Chugunov, V., Hashida, T.: Mathematical modeling of anomalous diffusion in porous media. Fract. Differ. Calc. 1, 1–28 (2011)CrossRefGoogle Scholar
  24. Fu, L., Milliken, K.L., Sharp Jr., J.M.: Porosity and permeability variations in fractured and liesegang-banded Breathitt sandstones (Middle Pennsylvanian), eastern Kentucky: diagenetic controls and implications for modeling dual-porosity systems. J. Hydrol. 154(1–4), 351–381 (1994)CrossRefGoogle Scholar
  25. Gefen, Y., Aharony, A., Alexander, S.: Anomalous diffusion on percolating clusters. Phys. Rev. Lett. 50(1), 77–80 (1983). doi: 10.1103/PhysRevLett.50.77
  26. Gradshteyn, S., Ryzhik, I.M.: Table of Integrals Series and Products Edited by A. Jeffrey, 5th edn. Academic Press, New York (1965)Google Scholar
  27. Henry, B.I., Langlands, T.A.M., Straka, P.: An introduction to fractional diffusion. In: Dewar, R.L., Detering, F. (eds.) Complex Physical, Biophysical and Econophysical Systems, p. 400. World Scientific, Hackensack (2010)Google Scholar
  28. Holcombe, W.: Haynesville and Hawkville: Two World Class Shale Gas Fields, presented at the SPE Mid-Continent Meeting. Tulsa, OK (2010)Google Scholar
  29. Holy, R., Albinali, A., Sarak, H., Ozkan, E.: Modelling of 1D Anomalous Diffusion in Fractured Nanoporous Media, presented at the Low Permeability Media and Nanoporous Materials From Characterization to Modeling, Can We Do Better?, Rueil-Malmaison, France. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles, 71(4), (2016) doi: 10.2516/ogst/2016008
  30. Houzé, O.P., Horne, R.N., Ramey, H.J.: Pressure-transient response of an infinite-conductivity vertical fracture in a reservoir with double-porosity behavior. SPE Form. Eval. 3(3), 510–518 (1988). doi: 10.2118/12778 CrossRefGoogle Scholar
  31. Kang, P.K., Le Borgne, T., Dentz, M., Bour, O., Juanes, R.: Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model. Water Resour. Res. 51(2), 940–959 (2015). doi: 10.1002/2014WR015799 CrossRefGoogle Scholar
  32. Kazemi, H.: Pressure transient analysis of naturally fractured reservoirs. Trans AIME 256, 451–461 (1969)Google Scholar
  33. Larsen, L., Hegre, T.M.: Pressure-Transient Behavior of Horizontal Wells with Finite-Conductivity Vertical Fractures, Paper SPE 22076, presented at the International Arctic Technology Conference, pp. 29–31. Anchorage, Alaska (1991)Google Scholar
  34. Le Mẽhautẽ, A., Crepy, G.: Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ion. 1(9–10), 17–30 (1983)CrossRefGoogle Scholar
  35. Metzler, R., Glockle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. Phys. A 211(1), 13–24 (1994)CrossRefGoogle Scholar
  36. Molz III, F.J., Fix III, G.J., Lu, S.S.: A physical interpretation for the fractional derivative in Levy diffusion. Appl. Math. Lett. 15(7), 907–911 (2002)CrossRefGoogle Scholar
  37. Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Status Solidi B Basic Res. 123(2), 739–745 (1984)CrossRefGoogle Scholar
  38. Ozkan, E., Ohaeri, U., Raghavan, R.: Unsteady flow to a well produced at a constant pressure in a fractured reservoir. SPE Form. Eval. 2(2), 186–200 (1987). doi: 10.2118/9902-PA CrossRefGoogle Scholar
  39. Ozkan, E., Raghavan, R.: Performance of horizontal wells subject to bottomwater drive. SPE Reserv. Eng. 5(3), 375–383 (1990). doi: 10.2118/18559-PA CrossRefGoogle Scholar
  40. Ozkan, E., Raghavan, R.: New solutions to solve problems in well test analysis: I-analytical considerations. SPE Form. Eval. 6(3), 359–368 (1991a). doi: 10.2118/18615-PA CrossRefGoogle Scholar
  41. Ozkan, E., Raghavan, R.: New solutions to solve problems in well test analysis: II-analytical considerations. SPE Form. Eval. 6(3), 369–378 (1991b). doi: 10.2118/18616-PA CrossRefGoogle Scholar
  42. Ozkan, E., Raghavan, R.: New Solutions for Well-Test-Analysis Problems: Part III-Additional Algorithms, SPE Annual Technical Conference and Exhibition, 25–28 September. New Orleans, Louisiana. (1994). doi: 10.2118/28424-MS
  43. Ozkan, E., Raghavan, R.: A computationally efficient transient-pressure solution for inclined wells. SPE Reserv. Eval. Eng. 3(5), 414–425 (2000). doi: 10.2118/66206-PA CrossRefGoogle Scholar
  44. Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkhäuser (2015)Google Scholar
  45. Pruess, K., Narasimhan, T.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25(01), 14–26 (1985). doi: 10.2118/10509-PA CrossRefGoogle Scholar
  46. Raghavan, R.: Well Test Analysis. Prentice Hall, Englewoods Cliffs (1993)Google Scholar
  47. Raghavan, R.: A note on the drawdown, diffusive behavior of fractured rocks. Water Resour. Res. 45(2), W02502 (2008)Google Scholar
  48. Raghavan, R.: Fractional derivatives: application to transient flow. J. Pet. Sci. Eng. 80, 7–13 (2011)CrossRefGoogle Scholar
  49. Raghavan, R.: Fractional diffusion: performance of fractured wells. J. Pet. Sci. Eng. 92–93, 167–173 (2012)CrossRefGoogle Scholar
  50. Raghavan, R., Chen, C.: Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity. J. Pet. Sci. Eng. 109, 133–143 (2013)CrossRefGoogle Scholar
  51. Raghavan, R., Chen, C.: Fractured-well performance under anomalous diffusion. SPE Res. Eval. Eng. 16(3), 237–245 (2013b). doi: 10.2118/165584-PA Google Scholar
  52. Raghavan, R., Chen, C.: Anomalous subdiffusion to a horizontal well by a subordinator. Transp. Porous. Med. 107, 387–401 (2015). doi: 10.1007/s11242-014-0444-y CrossRefGoogle Scholar
  53. Raghavan, R., Chen, C.: Rate Decline, Power Laws and Subdiffusion in Fractured Rocks. SPE Res. Eval. Eng. (2016, to appear)Google Scholar
  54. Raghavan, R., Ozkan, E.: A method for computing unsteady flows in porous media, Pitman research notes in mathematics series \((318)\). Harlow, Longman Scientific & Technical (1994)Google Scholar
  55. Raghavan, R., Ozkan, E.: Flow in composite slabs. SPE J. 16(2), 374–387 (2011). doi: 10.2118/140748-PA CrossRefGoogle Scholar
  56. Raghavan, R., Ohaeri, C.U.: Unsteady flow to a well produced at constant pressure in a fractured reservoir. Petrol. Eng. Soc. (1981). doi: 10.2118/9902-MS
  57. Raghavan, R., Uraiet, A., Thomas, G.W.: Vertical fracture height: effect on transient flow behavior. Soc. Petrol. Eng. J. 18(4), 265–277 (1978). doi: 10.2118/6016-PA CrossRefGoogle Scholar
  58. Raghavan, R., Chen, C., Agarwal, B.: An analysis of horizontal wells intercepted by multiple fractures. SPE J. 2(3), 235–245 (1997). doi: 10.2118/27652-PA CrossRefGoogle Scholar
  59. Reiss, L. H.: The Reservoir Engineering Aspects of Fractured Formations, Editions TECHNIP (1980)Google Scholar
  60. Russian, A., Gouze, P., Dentz, M., Gringarten, A.: Multi-continuum approach to modelling shale gas extraction. Transp. Porous Media 109(1), 109–130 (2015)CrossRefGoogle Scholar
  61. Sharp Jr., J.M., Kreisel, I., Milliken, K.L., Mace, R.E., Robinson, N.I.: Fracture skin properties and effects on solute transport: geotechnical and environmental implications. Tools and techniques. In: Aubertin, M., Hassam, F., Mitri, H. (eds.) Rock Mechanics. Balkema, Rotterdam (1996)Google Scholar
  62. Shlesinger, M.F.: Asymptotic solutions of continuous-time random walks. J. Stat. Phys. 10(5), 421–434 (1974)CrossRefGoogle Scholar
  63. Smith, L., Schwartz, F.W.: An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resour. Res. 20(9), 1241–1252 (1984). doi: 10.1029/WR020i009p01241 CrossRefGoogle Scholar
  64. Stehfest, H.: Algorithm 368: Numerical inversion of Laplace transforms [D5]. Commun. ACM 13(1), 47–49 (1970a)CrossRefGoogle Scholar
  65. Stehfest, H.: Remark on algorithm 368: Numerical inversion of Laplace transforms. Commun. ACM 13(10), 624 (1970b)CrossRefGoogle Scholar
  66. Torcuk, M.A., Kurtoglu, B., Alharthy, N., Kazemi, H.: Analytical Solutions for Multiple Matrix in Fractured Reservoirs: Application to Conventional and Unconventional Reservoirs, SPE Formation Evaluation & Engineering, 18(5), 969–981. Society of Petroleum Engineers (2013). doi: 10.2118/164528-PA
  67. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers Volume I Background and Theory. Springer, New York (2013)CrossRefGoogle Scholar
  68. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3(3), 245–255 (1963). doi: 10.2118/426-PA CrossRefGoogle Scholar
  69. Yeh, N.S., Davison, M.J., Raghavan, R.: Fractured well responses in heterogeneous systems-application to devonian shale and austin chalk reservoirs. ASME J. Energy Resour. Technol. 108(2), 120–130 (1986). doi: 10.1115/1.3231251 CrossRefGoogle Scholar
  70. Yu, W., Al-Shalabi, E.W., Sepehrnoori, K.: A sensitivity study of potential CO\(_2\) injection for enhanced gas recovery in Barnett shale reservoirs. Soc. Petrol. Eng. (2014). doi: 10.2118/169012-MS Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.R. Raghavan, IncTulsaUSA
  2. 2.Kappa EngineeringHoustonUSA

Personalised recommendations