Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Unconfined Seepage Analysis Using Moving Kriging Mesh-Free Method with Monte Carlo Integration

  • 376 Accesses

  • 7 Citations

Abstract

The unconfined seepage problem is a classic moving boundary problem, in which the position of phreatic surface is unknown at the beginning of solution and should be determined through iteration. Mesh-free methods are especially suitable for solving this problem. In this work, the moving Kriging mesh-free method with Monte Carlo integration is proposed. Additionally, a corresponding procedure for handling material discontinuity is presented, which extends the approach to inhomogeneous medium. The present method is a true mesh-free method, which does not require a mesh for either shape function construction or numerical integration. Another advantage of the present method is the convenient numerical implementation. Numerical examples show that the present method can achieve better convergence and higher accuracy with rational computation cost when compared with the original mesh-free method. The present method is also verified to be applicable in analyzing transient seepage through homogeneous and inhomogeneous media.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akai, K., Ohnishi, Y., Nishigaki, M.: Finite element analysis of saturated–unsaturated seepage flow in soils. Proc. Jpn. Soc. Civil Eng. 264, 87–96 (1977)

  2. Bardet, J.P., Tobita, T.: A practical method for solving free-surface seepage problems. Comput. Geotech. 29(6), 451–475 (2002)

  3. Bathe, K.J., Khoshgoftaar, M.R.: Finite element free surface seepage analysis without mesh iteration. Int. J. Numer. Anal. Methods Geomech. 3, 13–22 (1979)

  4. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

  5. Belytschko, T., Krongauz, Y., Organ, D., et al.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1), 3–47 (1996a)

  6. Belytschko, T., Krongauz, Y., Fleming, M., et al.: Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math. 74(12), 111–126 (1996b)

  7. Chaiyo, K., Rattanadecho, P., Chantasiriwan, S.: The method of fundamental solutions for solving free boundary saturated seepage problem. Int. Commun. Heat Mass Transf. 38(2), 249–254 (2011)

  8. Chen, J.T., Hsiao, C.C., Chiu, Y.P., et al.: Study of free-surface seepage problems using hypersingular equations. Commun. Numer. Methods Eng. 23(8), 755–769 (2007)

  9. Cheng, Y.M., Tsui, Y.: Technical note: an efficient method for the free surface seepage flow problems. Comput. Geotech. 15(1), 47–62 (1993)

  10. Crowe, A.S., Shikaze, S.G., Schwartz, F.W.: A grid generating algorithm for simulating a fluctuating water table boundary in heterogeneous unconfined aquifers. Adv. Water Resour. 22(6), 567–575 (1999)

  11. Darbandi, M., Torabi, S.O., Saadat, M., et al.: A moving-mesh finite-volume method to solve free-surface seepage problem in arbitrary geometries. Int. J. Numer. Anal. Methods Geomech. 31(14), 1609–1629 (2007)

  12. Desai, C.S.: Finite element residual schemes for unconfined flow. Int. J. Numer. Methods Eng. 10, 1415–1418 (1976)

  13. Desai, C.S., Li, G.C.: A residual flow procedure and application for free surface flow in porous media. Adv. Water Resour. 6, 27–35 (1983)

  14. Frolkovi, P.: Application of level set method for groundwater flow with moving boundary. Adv. Water Resour. 47(10), 56–66 (2012)

  15. Gioda, G., Gentile, C.: A nonlinear programming analysis of unconfined steady-state seepage. Int. J. Numer. Anal. Methods Geomech. 11(3), 283–305 (1987)

  16. Gu, L.: Moving Kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56, 1–11 (2003)

  17. Hashemi, M.R., Hatam, F.: Unsteady seepage analysis using local radial basis function-based differential quadrature method. Appl. Math. Model. 35(10), 4934–4950 (2011)

  18. Hornung, U., Krueger, T.: Evaluation of the Polubarinova-Kochina Formula for the dam problem. Water Resour. Res. 21, 395–398 (1985)

  19. Jie, Y., Jie, G., Mao, Z., et al.: Seepage analysis based on boundary-fitted coordinate transformation method. Comput. Geotech. 31(4), 279–283 (2004)

  20. Jie, Y.X., Liu, Y.: Simulated annealing based algorithm for node generation in seepage analysis with meshless method. Mech. Res. Commun. 43, 96–100 (2012)

  21. Jie, Y.X., Fu, X.D., Deng, G.: Treatment of transitional element with the Monte Carlo method for FEM-based seepage analysis. Comput. Geotech. 52(10), 1–6 (2013)

  22. Kazemzadeh-Parsi, M.J., Daneshmand, F.: Unconfined seepage analysis in earth dams using smoothed fixed grid finite element method. Int. J. Numer. Anal. Methods Geomech. 36(6), 780–797 (2012)

  23. Kazemzadeh-Parsi, M.J., Daneshmand, F.: Three dimensional smoothed fixed grid finite element method for the solution of unconfined seepage problems. Finite Elem. Anal. Des. 64(3), 24–35 (2013)

  24. Lam, L., Fredlund, D.G.: Saturated–unsaturated transient finite element seepage model for geotechnical engineering. Adv. Water Resour. 7, 132–136 (1984)

  25. Lam, L., Fredlund, D.G., Barbour, S.L.: Transient seepage model for saturated–unsaturated soil systems: a geotechnical engineering approach. Can. Geotech. J. 24(4), 565–580 (1987)

  26. Leontiev, A., Huacasi, W.: Mathematical programming approach for unconfined seepage flow problem. Eng. Anal. Bound. Elem. 25(1), 49–56 (2001)

  27. Li, G.X., Ge, J.H., Jie, Y.X.: Free surface seepage analysis based on the element-free method. Mech. Res. Commun. 30(1), 9–19 (2003)

  28. Obnosov, Y.V., Kacimov, A.R., Castro-Orgaz, O.: Analytical solutions for steady phreatic flow appearing/re-emerging toward/from a Bedrock/Caprock Isobaric Breach: the Polubarinova-Kochina–Numerov and Pavlovsky problems revisited. Transp. Porous Media 109(2), 1–22 (2015)

  29. Organ, D., Fleming, M., Terry, T., et al.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18(3), 225–235 (1996)

  30. Rafiezadeh, K., Ataie-Ashtiani, B.: Transient free-surface seepage in three-dimensional general anisotropic media by BEM. Eng. Anal. Bound. Elem. 46(3), 51–66 (2014)

  31. Shahrokhabadi, S., Toufigh, M.M.: The solution of unconfined seepage problem using natural element method (NEM) coupled with genetic algorithm (GA). Appl. Math. Model. 37(5), 2775–2786 (2013)

  32. Sharif, N.H., Wiberg, N.E.: Adaptive ICT procedure for non-linear seepage flows with free surface in porous media. Commun. Numer. Methods Eng. 18(3), 161–176 (2002)

  33. Zhang, J.H., Xu, Q.J., Chen, Z.Y.: Seepage analysis based on the unified unsaturated soil theory. Mech. Res. Commun. 28(1), 107–112 (2001)

  34. Zheng, H., Liu, D.F., Lee, C.F., et al.: New variational inequality formulation for seepage problems with free surfaces. Appl. Math. Mech. 26(3), 396–406 (2005)

  35. Zheng, B., Dai, B.: A meshless local moving Kriging method for two-dimensional solids. Appl. Math. Comput. 218(2), 563–573 (2011)

  36. Zheng, H., Liu, F., Li, C.: Primal mixed solution to unconfined seepage flow in porous media with numerical manifold method. Appl. Math. Model. 39(2), 794–808 (2015)

Download references

Acknowledgments

The research is supported by the National Natural Science Foundation of China (NSFC) through Grant Nos. 41530638, 41372302 and High Level Talent Project in Guangdong Province through Grant No. 20143900042010003.

Author information

Correspondence to Cuiying Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Dai, B., Liu, Z. et al. Unconfined Seepage Analysis Using Moving Kriging Mesh-Free Method with Monte Carlo Integration. Transp Porous Med 116, 163–180 (2017). https://doi.org/10.1007/s11242-016-0769-9

Download citation

Keywords

  • Mesh-free method
  • Unconfined seepage
  • Moving Kriging
  • Monte Carlo integration
  • Inhomogeneous earth dam