Transport in Porous Media

, Volume 116, Issue 1, pp 115–142 | Cite as

Free Surface Flow in a Microfluidic Corner and in an Unconfined Aquifer with Accretion: The Signorini and Saint-Venant Analytical Techniques Revisited

  • A. R. Kacimov
  • D. V. Maklakov
  • I. R. Kayumov
  • A. Al-Futaisi
Article

Abstract

Steady, laminar, fully developed flows of a Newtonian fluid driven by a constant pressure gradient in (1) a curvilinear constant cross section triangle bounded by two straight no-slip segments and a circular meniscus and (2) a wedge bounded by two rays and an adjacent film bulging near the corner are studied analytically by the theory of holomorphic functions and numerically by finite elements. The analytical solution of the first problem is obtained by reducing the Poisson equation for the longitudinal flow velocity to the Laplace equation, conformal mapping of the corresponding transformed physical domain onto an auxiliary half-plane and solving there the Signorini mixed boundary value problem (BVP). The numerical solution is obtained by meshing the circular sector and solving a system of linear equations ensuing from the Poisson equation. Comparisons are made with known solutions for flows in a rectangular conduit, circular annulus and Philip’s circular duct with a no-shear sector. Problem (2) is treated by the Saint-Venant semi-inverse method: the free surface (quasi-meniscus) is reconstructed by a one-parametric family, which specifies a holomorphic function of the first derivative of the physical coordinate with respect to an auxiliary variable. The latter maps the flow domain onto a quarter of a unit disc where a mixed BVP for a characteristic function is solved by the Zhukovsky–Chaplygin method. Velocity distributions in a cross section perpendicular to the flow direction are obtained. It is shown that the change of the type of the boundary condition from no slip to perfect slip (along the meniscus) causes a dramatic increase of the total flow rate (conductance). For example, the classical Saint-Venant formulae for a sector, with all three boundaries being no-slip segments, predict up to four times smaller rate as compared to a free surface meniscus. Mathematically equivalent problems of unconfined flows in aquifers recharged by a constant-intensity infiltration are also addressed.

Keywords

Viscous film Meniscus Poisson equation Signorini formula Zhukovsky–Chaplygin method Zunker’s pendular water slug 

Supplementary material

11242_2016_767_MOESM1_ESM.pdf (12 kb)
Supplementary material 1 (pdf 11 KB)
11242_2016_767_MOESM2_ESM.pdf (178 kb)
Supplementary material 2 (pdf 177 KB)
11242_2016_767_MOESM3_ESM.pdf (77 kb)
Supplementary material 3 (pdf 76 KB)
11242_2016_767_MOESM4_ESM.pdf (241 kb)
Supplementary material 4 (pdf 240 KB)
11242_2016_767_MOESM5_ESM.pdf (128 kb)
Supplementary material 5 (pdf 128 KB)
11242_2016_767_MOESM6_ESM.pdf (213 kb)
Supplementary material 6 (pdf 212 KB)

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)Google Scholar
  2. Adler, P.M.: Porous Media: Geometry and Transports. Butterworth/Heinemann, Boston (1992)Google Scholar
  3. Ajaev, V.S.: Interfacial Fluid Mechanics. A Mathematical Modeling Approach. Springer, New York (2012)CrossRefGoogle Scholar
  4. Al-Futaisi, A., Patzek, T.W.: Impact of wettability on two-phase flow characteristics of sedimentary rocks: quasi-static model. Water Resour. Res. 39(2), 1042–1055 (2003a)CrossRefGoogle Scholar
  5. Al-Futaisi, A., Patzek, T.W.: Three-phase hydraulic conductances in angular capillaries. Soci. Petro. Engrg. J. 8(3), 252–261 (2003b)Google Scholar
  6. Al-Maktoumi, A., Kacimov, A., Al-Ismaily, S., Al-Busaidi, H.: Infiltration into two-layered soil: the Green-Ampt and Averyanov models revisited. Transp. Porous Media 109, 169–193 (2015). doi:10.1007/s11242-015-0507-8 CrossRefGoogle Scholar
  7. Arutyunyan, NKh, Abramyan, B.L.: Torsion of Elastic Bodies. Fizmatgiz, Moscow (in Russian) (1963)Google Scholar
  8. Averyanov, S.F.: The dependence of permeability of soils on their air content. Dokl. AN SSSR 69, 141–144 (1949)Google Scholar
  9. Avkhadiev, F.G., Kacimov, A.R.: Analytical solutions and estimates for microlevel flows. J. Porous Media 8, 125–148 (2005)CrossRefGoogle Scholar
  10. Babskii, V.G., Kopachevskii, N.D., Myshkis, A.D., Slobozhanin, L.A., Tyuptsov, A.D.: Fluid Mechanics of Weightlessness. Nauka, Moscow (in Russian) (1976)Google Scholar
  11. Baret, J.-C., Decre, M.M.J., Herminghaus, S., Seemann, R.: Transport dynamics in open microfluidic grooves. Langmuir 23, 5200–5204 (2007)CrossRefGoogle Scholar
  12. Berhanu, M., Petroff, A., Devauchelle, O., Kudrolli, A., Rothman, D.H.: Shape and dynamics of seepage erosion in a horizontal granular bed. Phys. Rev. E 86, 041304 (2012)CrossRefGoogle Scholar
  13. Blossey, R.: Thin Liquid Films. Dewetting and Polymer Flow. Springer, Dordrecht (2012)CrossRefGoogle Scholar
  14. Blunt, M.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6, 197–207 (2001)CrossRefGoogle Scholar
  15. Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25, 1069–1089 (2002)CrossRefGoogle Scholar
  16. Brauner, N., Rovinsky, J., Maron, D.M.: Analytical solution for laminar–laminar two-phase stratified flow in circular conduits. Chem. Eng. Commun. 141–142, 103–143 (1996)CrossRefGoogle Scholar
  17. Brinkmann, M., Khare, K., Seemann, R.: Control of liquids by surface energies. In: Hardt, S., Schönfeld, F. (eds.) Microfluidic Technologies for Miniaturized Analysis Systems, pp. 157–197. Berlin (2007)Google Scholar
  18. Constantinescu, V.N.: Laminar Viscous Flow. Springer, Berlin (1995)CrossRefGoogle Scholar
  19. Darhuber, A.A., Troian, S.M., Reisner, W.W.: Dynamics of capillary spreading along hydrophilic microstripes. Phys. Rev., E 64(3), 031603 (2001)CrossRefGoogle Scholar
  20. Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure, 2nd edn. Academic Press, New York (1992)Google Scholar
  21. Finn, R.: Equilibrium Capillary Surfaces. Springer, Berlin (1986)CrossRefGoogle Scholar
  22. Gakhov, F. D.: Boundary Value Problems. Nauka, Moscow (in Russian). (English translation of the 1st edn., Addison Wesley, New York, 1966) (1997)Google Scholar
  23. Goldstein, A., Ullmann, A., Brauner, N.: Characteristics of stratified laminar flows in inclined pipes. Int. J. Multiphase Flow 75, 267–287 (2015)CrossRefGoogle Scholar
  24. Gurevich, M.I.: Theory of Jets in Ideal Fluids. Academic Press, New York (1965)Google Scholar
  25. Hammecker, C., Barbiero, L., Boivin, P., Maeght, J.L., Diaw, E.H.B.: A geometrical pore model for estimating the microscopical pore geometry of soil with infiltration measurements. Transp. Porous Media 54, 193–219 (2004)CrossRefGoogle Scholar
  26. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice Hall, Englewood Cliffs (1965)Google Scholar
  27. Held, R.J., Celia, M.A.: Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines. Adv. Water Resour. 24, 325–343 (2001)CrossRefGoogle Scholar
  28. Herminghaus, S., Brinkmann, M., Seemann, R.: Wetting and dewetting of complex surface geometries. Ann. Rev. Mater. Res. 38, 101–121 (2008)CrossRefGoogle Scholar
  29. Hui, M.H., Blunt, M.J.: Effects of wettability on three-phase flow in porous media. J. Phys. Chem. B 104, 3833–3845 (2000)CrossRefGoogle Scholar
  30. Ilyinsky, N.B., Kacimov, A.R.: The estimation of integral seepage characteristics of hydraulic structures in terms of the theory of inverse boundary-value problems. Z. Angew. Math. Mech., B 72(2), 103–112 (1992)CrossRefGoogle Scholar
  31. Kachinsky, N.A.: Soil Physics. V.II. Moscow, Vyshsaya Shkola (in Russian) (1970)Google Scholar
  32. Kacimov, A.R.: Optimization of the protrusion shape for a Couette type flow. Optim. Control Appl. Methods 15, 193–203 (1994)CrossRefGoogle Scholar
  33. Kacimov, A.R., Kayumov, I.R.: Viscous flow through straight pore channels. J. Porous Media 3, 199–208 (2002)Google Scholar
  34. Kacimov, A.R., Kayumov, I.R., Al-Maktoumi, A.: Rainfall induced groundwater mound in wedge-shaped promontories: the Strack–Chernyshov model revisited. Adv. Water Resour. 97, 110–119 (2016). http://www.sciencedirect.com/science/article/pii/S0309170816303633
  35. Kacimov, A.R., Obnosov, YuV, Al-Maktoumi, A., Al-Balushi, M.: How much of floating LNAPL can a phreatic surface sustain? Riesenkampf’s scheme revisited. Water Resour. Res. 47, W11521 (2011). doi:10.1029/2010WR010369 CrossRefGoogle Scholar
  36. Kacimov, A.R., Obnosov, Yu., Mosavat, N.: Analytical solution for supercritical upconing of two immiscible fluids moving to a horizontal well. J Pet Sci Eng, submittedGoogle Scholar
  37. Khare, K., Herminghaus, S., Baret, J.C., Law, B.M., Brinkmann, M., Seemann, R.: Switching liquid morphologies on linear grooves. Langmuir 23, 12997–13006 (2007)CrossRefGoogle Scholar
  38. Khare, K., Zhou, J., Yang, S.: Tunable open channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25, 12794–12799 (2009)CrossRefGoogle Scholar
  39. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover, New York (2005)Google Scholar
  40. Kitron-Belinkov, M., Marmur, A., Trabold, T., Dadheech, G.V.: Groovy-drops: effect of groove curvature on spontaneous capillary flow. Langmuir 23, 8406–8410 (2007)CrossRefGoogle Scholar
  41. Kołodziej, J.A., Fraska, A.: Elastic torsion of bars possessing regular polygon in cross-section using BCM. Comput. Struct. 84, 78–91 (2005)CrossRefGoogle Scholar
  42. Lazouskaya, V., Jin, Y., Or, D.: Interfacial interactions and colloid retention under steady flows in a capillary channel. J. Colloid Interface Sci. 303, 171–184 (2006)CrossRefGoogle Scholar
  43. Mahdavi, A., Seyyedian, H.: Steady-state groundwater recharge in trapezoidal-shaped aquifers: a semi-analytical approach based on variational calculus. J. Hydrol. 512, 457–462 (2014)CrossRefGoogle Scholar
  44. Mathworks: Partial Differential Equation Toolbox Users Guide. The Mathworks Inc, Natick (1998)Google Scholar
  45. McComb, H.G.: Torsional stiffness of thin-walled shells having reinforcing cores and rectangular, triangular, or diamond cross section. NACA Technical Report 1359, Langley Aeronautical Lab (1957)Google Scholar
  46. Moffatt, H.K., Duffy, B.R.: Local similarity solutions and their limitations. J. Fluid Mech. 96, 299–313 (1980)CrossRefGoogle Scholar
  47. Nardin, C.L., Weislogel, M.M.: Capillary driven flows along differentially wetted interior corners. NASA Report, CR - 2005-213799, 1–24 (2005)Google Scholar
  48. Or, D., Tuller, M.: Hydraulic conductivity of partially saturated fractured porous media: flow in a cross-section. Adv. Water Resour. 26(1), 883–898 (2003)CrossRefGoogle Scholar
  49. Patzek, T.W., Kristensen, J.D.: Shape factor and hydraulic conductance in noncircular capillaries: II. Two-phase creeping flow. J. Colloid Interface Sci. 236(2), 305–317 (2001)CrossRefGoogle Scholar
  50. Patzek, T.W., Silin, D.B.: Shape factor and hydraulic conductance in noncircular capillaries: I. One-phase creeping flow. J. Colloid Interface Sci. 236(2), 295–304 (2001)CrossRefGoogle Scholar
  51. Petroff, A.P., Devauchelle, O., Abrams, D.M., Lobkovsky, A.E., Kudrolli, A., Rothman, D.H.: Geometry of valley growth. J. Fluid Mech. 673, 245–254 (2011)CrossRefGoogle Scholar
  52. Petroff, A.P., Devauchelle, O., Seybold, H., Rothman, D.H.: Bifurcation dynamics of natural drainage networks. Phil. Trans. R. Soc., A 371, 20120365 (2013)Google Scholar
  53. Philip, J.R.: Flow in porous media. Annu. Rev. Fluid Mech. 2, 177–204 (1970)CrossRefGoogle Scholar
  54. Philip, J.R.: Flows satisfying mixed no-slip and no-shear conditions. J. Appl. Math. Phys. (ZAMP) 23, 353–372 (1972)CrossRefGoogle Scholar
  55. Polubarinova-Kochina, P.Ya.: Theory of Ground-Water Movement. Moscow Nauka, in Russian (English translation of the first edition: Princeton Univ. Press, Princeton, 1962) (1977)Google Scholar
  56. Polzin, K.A., Choueiri, E.A.: Similarity parameter for capillary flows. J. Phys. D Appl. Phys. 36, 3156–3167 (2003)CrossRefGoogle Scholar
  57. Pozrikidis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, Oxford (2011)Google Scholar
  58. Quere, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008)CrossRefGoogle Scholar
  59. Ransohoff, T.C., Radke, C.J.: Laminar flow of a wetting liquid along the corners of a predominantly gas- occupied noncircular pore. J. Colloid Interface Sci. 121, 392–401 (1988)CrossRefGoogle Scholar
  60. Rejmer, K., Dietrich, S., Napiórkowski, M.: Filling transition for a wedge. Phys. Rev. E 60, 4027–4042 (1999)CrossRefGoogle Scholar
  61. Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb, S., Stegmaier, T., Sarsour, J., Linke, M., Konrad, W.: Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J. R. Soc. Interface (2012). doi:10.1098/rsif.2011.0847
  62. Rye, R.R., Mann Jr., J.A., Yost, F.G.: The flow of liquids in surface grooves. Langmuir 12, 555–565 (1996)CrossRefGoogle Scholar
  63. Saint-Venant, B.: Sur la torsion des prismes à bases mixtiligne, et sur une singularité que peuvent offrir certains emplois de la coordonnée logarithmique du système cylindrique isotherme de Lamé. Comptes Rendus des Séances de l’Académie des Sciences. Paris 87, 849–854 (1878). (in French)Google Scholar
  64. Seemann, R., Brinkmann, M., Herminghaus, S., Khare, K., Law, B.M., McBride, S., Kostourou, K., Gurevich, E., Bommer, S., Herrmann, C., Michler, D.: Wetting morphologies and their transitions in grooved substrates. J. Phys. Condens. Matter. 23, 184108 (2011)CrossRefGoogle Scholar
  65. Sekulic, D.P.: Wetting and spreading of liquid metals through open microgrooves and surface alterations. Heat Transf. Eng. 32(7–8), 648–657 (2011). doi:10.1080/01457632.2010.509758 CrossRefGoogle Scholar
  66. Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2. The Biharmonic Equation, Poisson’s Equation. Springer (2000)Google Scholar
  67. Shahraeeni, E., Or, D.: Pore-scale analysis of evaporation and condensation dynamics in porous media. Langmuir 26(17), 13924–13936 (2010)CrossRefGoogle Scholar
  68. Slezkin, N.A.: Dynamics of Viscous Incompressible Fluid. Gostechizdat, Moscow (in Russian) (1955)Google Scholar
  69. Strack, O.D.L.: Groundwater Mechanics. Prentice-Hall Inc, Englewood Cliffs (1989)Google Scholar
  70. Teo, C.J., Khoo, B.C.: Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves. Microfluidics Nanofluidics 7, 353–382 (2009)CrossRefGoogle Scholar
  71. Timoshenko, S.P., Goodier, J.C.: Theory of Elasticity. McGraw-Hill, New York (1970)Google Scholar
  72. Uflyand, Y.S.: Integral Transforms in Problems of Elasticity Theory. Nauka, Leningrad (in Russian) (1968)Google Scholar
  73. Versluys, T.: Die Kapillaritat der Boden. Internet. Mitt, fur Bodenkunde, Bd. 7, Berlin (in German) (1917)Google Scholar
  74. Wang, C.Y.: Torsion of a compound bar bounded by cylindrical polar coordinates. Q. J. Mech. Appl. Math. 48, 359–400 (1995)CrossRefGoogle Scholar
  75. Wang, C.Y.: Torsion of polygonal bar with core of different material. J. Engrg. Mech. 125, 1218–1221 (1999)CrossRefGoogle Scholar
  76. Wang, C.Y.: Flow over a surface with parallel grooves. Phys. Fluids 15, 1114–1121 (2003)CrossRefGoogle Scholar
  77. Weislogel, M.M.: Compound capillary rise. J. Fluid Mech. 709, 622–647 (2012)CrossRefGoogle Scholar
  78. White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (1991)Google Scholar
  79. Wigglesworth, L.A., Stevenson, A.C.: Flexure and torsion of cylinders with cross-sections bounded by orthogonal circular arcs. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 170, 391–414 (1939)Google Scholar
  80. Wolfram, S.: Mathematica: a system for doing mathematics by computer. Addison-Wesley, Redwood City (1991)Google Scholar
  81. Youngs, E.G., Kacimov, A.R.: Conduction through spherical particles at low liquid content. Int. J. Heat Mass Transf. 50(1–2), 292–302 (2007)CrossRefGoogle Scholar
  82. Zhang, Q., Karadimitriou, N.K., Hassanizadeh, S.M., Kleingeld, P.J., Imhof, A.: Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. J. Colloid Interface Sci. 401, 141–147 (2013)CrossRefGoogle Scholar
  83. Zhou, D., Blunt, M.J., Orr, F.M.: Hydrocarbon drainage along corners of noncircular capillaries. J. Colloid Interface Sci. 187, 11–21 (1997)CrossRefGoogle Scholar
  84. Zunker, F.: Das Verhalten des Bodens zum Wasser. Handbuch der Bodenlehre. Bd. VI, Berlin (in German) (1930)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. R. Kacimov
    • 1
  • D. V. Maklakov
    • 2
  • I. R. Kayumov
    • 2
  • A. Al-Futaisi
    • 3
    • 4
  1. 1.Department of Soils, Water and Agricultural EngineeringSultan Qaboos UniversityMuscatOman
  2. 2.Institute of Mathematics and MechanicsKazan Federal UniversityKazanRussia
  3. 3.Department of Civil and Architectural EngineeringSultan Qaboos UniversityMuscatOman
  4. 4.Ministry of Transport and CommunicationMuscatOman

Personalised recommendations