Transport in Porous Media

, Volume 116, Issue 1, pp 73–90 | Cite as

Implications of Grain-Scale Mineralogical Heterogeneity for Radionuclide Transport in Fractured Media

  • Paolo Trinchero
  • Jorge Molinero
  • Guido Deissmann
  • Urban Svensson
  • Björn Gylling
  • Hedieh Ebrahimi
  • Glenn Hammond
  • Dirk Bosbach
  • Ignasi Puigdomenech


The geological disposal of nuclear waste is based on the multi-barrier concept, comprising various engineered and natural barriers, to confine the radioactive waste and isolate it from the biosphere. Some of the planned repositories for high-level nuclear waste will be hosted in fractured crystalline rock formations. The potential of these formations to act as natural transport barriers is related to two coupled processes: diffusion into the rock matrix and sorption onto the mineral surfaces available in the rock matrix. Different in situ and laboratory experiments have pointed out the ubiquitous heterogeneous nature of the rock matrix: mineral surfaces and pore space are distributed in complex microstructures and their distribution is far from being homogeneous (as typically assumed by Darcy-scale coarse reactive transport models). In this work, we use a synthetically generated fracture–matrix system to assess the implications of grain-scale physical and mineralogical heterogeneity on cesium transport and retention. The resulting grain-scale reactive transport model is solved using high-performance computing technologies, and the results are compared with those derived from two alternative models, denoted as upscaled models, where mineral abundance is averaged over the matrix volume. In the grain-scale model, the penetration of cesium into the matrix is faster and the penetration front is uneven and finger-shaped. The analysis of the cesium breakthrough curves computed at two different points in the fracture shows that the upscaled models provide later first-arrival time estimates compared to the grain-scale model. The breakthrough curves computed with the three models converge at late times. These results suggest that spatially averaged upscaled parameters of sorption site distribution can be used to predict the late-time behavior of breakthrough curves but could be inadequate to simulate the early behavior.


Grain-scale mineralogical heterogeneity Radionuclide transport Microcontinuum model High-performance computing (HPC) 



PT, JM, US and HE thank the Swedish Nuclear Fuel and Waste Management Company (SKB) for the financial support. The authors also thank the PFLOTRAN development group for their help during the project. The authors gratefully acknowledge the computing time granted by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part of the supercomputer JUQUEEN at Forschungszentrum Jülich. This paper has greatly benefited from helpful comments by Peter Lichtner and four anonymous reviewers.


  1. Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013)CrossRefGoogle Scholar
  2. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)CrossRefGoogle Scholar
  3. Bradbury, M.H., Baeyens, B.: A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J. Contam. Hydrol. 42(2), 141–163 (2000)CrossRefGoogle Scholar
  4. Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerà, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrol. J. 6(1), 178–190 (1998)Google Scholar
  5. Cvetkovic, V., Selroos, J., Cheng, H.: Transport of reactive tracers in rock fractures. J. Fluid Mech. 378, 335–356 (1999)CrossRefGoogle Scholar
  6. Cvetkovic, V., Painter, S., Outters, N., Selroos, J.: Stochastic simulation of radionuclide migration in discretely fractured rock near the Äspö Hard Rock Laboratory. Water Resour. Res. 40(2), (2004). doi: 10.1029/2003WR002655
  7. Glassley, W.E., Simmons, A.M., Kercher, J.R.: Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models. Appl. Geochem. 17(6), 699–708 (2002)CrossRefGoogle Scholar
  8. Hammond, G., Lichtner, P., Mills, R.: Evaluating the performance of parallel subsurface simulators: an illustrative example with PFLOTRAN. Water Resour. Res. 50(1), 208–228 (2014)CrossRefGoogle Scholar
  9. Kyllönen, J., Hakanen, M., Lindberg, A., Harjula, R., Vehkamäki, M., Lehto, J.: Modeling of cesium sorption on biotite using cation exchange selectivity coefficients. Radiochim. Acta 102(10), 919–929 (2014)CrossRefGoogle Scholar
  10. Lichtner, P., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R., Kumar, J.: PFLOTRAN user manual. ( (2013)
  11. Lichtner, P.C., Yabusaki, S., Pruess, K., Steefel, C.I.: Role of competitive cation exchange on chromatographic displacement of cesium in the vadose zone beneath the Hanford S/SX tank farm. Vadose Zone J. 3(1), 203–219 (2004)CrossRefGoogle Scholar
  12. Lu, J., Kharaka, Y.K., Thordsen, J.J., Horita, J., Karamalidis, A., Griffith, C., Hakala, J.A., Ambats, G., Cole, D.R., Phelps, T.J., et al.: \(CO_2\)-rock–brine interactions in Lower Tuscaloosa Formation at Cranfield \(CO_2\) sequestration site, Mississippi, USA. Chem. Geol. 291, 269–277 (2012)CrossRefGoogle Scholar
  13. Molinero, J., Trinchero, P., Ebrahimi, H., de Vries, L., Luna, M., Svensson, U., Lichtner, P.: The BRIDGE project: development, testing and application of a high performance computing framework for reactive transport modelling in crystalline roks (iDP). R-15-17, Svensk Kärnbränslehantering AB, Stockholm, Sweden (2016)Google Scholar
  14. Molins, S.: Reactive interfaces in direct numerical simulation of pore scale processes. Rev. Mineral Geochem. 80, 461–481 (2015). doi: 10.1029/2011WR011404 CrossRefGoogle Scholar
  15. Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48(3) (2012)Google Scholar
  16. Molins, S., Trebotich, D., Yang, L., Ajo-Franklin, J.B., Ligocki, T.J., Shen, C., Steefel, C.I.: Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 48(13), 7453–7460 (2014)CrossRefGoogle Scholar
  17. Neretnieks, I.: Diffusion in the rock matrix: an important factor in radionuclide retardation. J. Geophys. Res. 85(B8), 4379–4397 (1980)CrossRefGoogle Scholar
  18. Nilsson, K., Byegård, J., Selnert, E., Widestrand, H., Höglund, S., Gustafsson, E.: Äspö hard rock laboratory. Long Term Sorption Diffusion Experiment (LTDE-SD). Results from rock sample analyses and modelling. R-10-68, Svensk Kärnbränslehantering AB, Stockholm, Sweden (2010)Google Scholar
  19. Painter, S., Cvetkovic, V., Mancillas, J., & Pensado. O.: Time domain particle tracking methods for simulating transport with retention and first-order transformation. Water Resour. Res. 44(1), 2008. doi: 10.1029/2007WR005944
  20. Rhoades, J.: Cation exchange capacity. Methods of soil analysis. Part 2. Chemical and microbiological properties, pp 149–157 (1982)Google Scholar
  21. Salas, J., Molinero, J., Juarez, I., Gimeno, M., Auque, L., Gomez, J.: SR-Site-hydrogeochemical evolution of the Forsmark site. TR-10-58, Svensk Kärnbränslehantering AB, Stockholm, Sweden (2010)Google Scholar
  22. Sidborn, M., Sandstroem, B., Tullborg, E.-L., Salas, J., Maia, F., Delos, A., Molinero, J., Hallbeck, L., Pedersen, K.: Sr-site: Oxygen ingress in the rock at forsmark during a glacial cycle. TR-10-57, Svensk Kärnbränslehantering AB, Stockholm, Sweden (2010)Google Scholar
  23. SKB. Äspö Hard Rock Laboratory - Annual Report, : TR-15-10. Svensk Kärnbränslehantering AB, Stockholm, Sweden (2014)Google Scholar
  24. Soler, J.M., Landa, J., Havlova, V., Tachi, Y., Ebina, T., Sardini, P., Siitari-Kauppi, M., Martin, A.J.: Modeling of an in-situ diffusion experiment in granite at the Grimsel Test Site. In MRS Proceedings, vol. 1665, pp. 85–91. Cambridge University Press, Cambridge (2014)Google Scholar
  25. Steefel, C.I., Beckingham, L.E., Landrot, G.: Micro-continuum approaches for modeling pore-scale geochemical processes. Rev. Mineral Geochem. 80, 217–246 (2015)CrossRefGoogle Scholar
  26. Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre. J. Large Scale Res. Facil. JLSRF, 1. doi: 10.17815/jlsrf-1-18 (2015)
  27. Svensson, U.: A continuum representation of fracture networks. Part I: method and basic test cases. J. Hydrol. 250(1), 170–186 (2001a)CrossRefGoogle Scholar
  28. Svensson, U.: A continuum representation of fracture networks. Part II: application to the Äspö Hard Rock laboratory. J. Hydrol. 250(1), 187–205 (2001b)CrossRefGoogle Scholar
  29. Svensson, U., Ferry, M.: DarcyTools: a computer code for hydrogeological analysis of nuclear waste repositories in fractured rock. J. Appl. Math. Phys. 2(06), 365 (2014)CrossRefGoogle Scholar
  30. Svensson, U., Kuylenstierna, H.-O., Ferry, M.: DarcyTools version 3.4: concepts, methods and equations. R-07-38, Svensk Kärnbränslehantering (SKB) (2010)Google Scholar
  31. Voutilainen, M., Sardini, P., Siitari-Kauppi, M., Kekäläinen, P., Aho, V., Myllys, M., Timonen, J.: Diffusion of tracer in altered tonalite: experiments and simulations with heterogeneous distribution of porosity. Transp. Porous Media 96(2), 319–336 (2013)CrossRefGoogle Scholar
  32. Voutilainen, M., Poteri, A., Helariutta, K., Siitari-Kauppi, M., Nilsson, K., Andersson, P., Byegård, J., Skålberg, M., Kekäläinen, P., Timonen, J., Lindberg, A., Pitknen, P., Kemppainen, K., Liimatainen, J., Hautojrvi, A., Koskinen, L., In-situ experiments for investigating the retention properties of rock matrix in ONKALO, Olkiluoto, Finland. In WM2014 Conference, March 2–6, Phoenix. Arizona, USA (2014)Google Scholar
  33. Winberg, A., Andersson, P., Hermanson, J., Byegard, J., Cvetkovic, V., Birgersson, L.: Äspö Hard Rock Laboratory: final report of the first stage of the tracer retention understanding experiments. TR-00-07, Svensk Kärnbränslehantering (SKB) (2000)Google Scholar
  34. Zaretskiy, Y., Geiger, S., Sorbie, K.: Direct numerical simulation of pore-scale reactive transport: applications to wettability alteration during two-phase flow. Int. J. Oil Gas Coal Technol. 5(2–3), 142–156 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.AMPHOS 21 Consulting S.L.BarcelonaSpain
  2. 2.Institute for Energy and Climate Research: Nuclear Waste Management and Reactor Safety (IEK-6) and JARA-HPCForschungszentrum Jülich GmbHJülichGermany
  3. 3.Computer-Aided Fluid Engineering ABLyckebySweden
  4. 4.Applied Systems Analysis and Research, Sandia National LaboratoriesAlbuquerqueUSA
  5. 5.Swedish Nuclear Fuel and Waste Management CompanyStockholmSweden

Personalised recommendations