Advertisement

Transport in Porous Media

, Volume 114, Issue 1, pp 213–233 | Cite as

Characterizing Porous Media with the Yield Stress Fluids Porosimetry Method

  • Antonio Rodríguez de Castro
  • Abdelaziz Omari
  • Azita Ahmadi-Sénichault
  • Sabine Savin
  • Luis-Fernando Madariaga
Article

Abstract

A new data analyzing method to characterize pore size distribution (PSD) of porous media was recently presented in the context of an international consensus on the need to develop alternatives to toxic mercury porosimetry. It consists in measuring the flow rate Q at several pressure gradients \(\nabla \textit{P}\) during flow experiments of yield stress fluids through porous media. In the present work, the PSD of different types of porous media is determined with this new technique and the obtained results are compared with those provided by mercury porosimetry. A series of experiments using a given yield stress fluid with different porous media were carried out in order to study the relevance of the obtained PSD. Besides, the critical aspects conditioning the experimental performance of the method were also identified and assessed.

Keywords

Yield stress fluids Porosimetry Experimental method Pore size distribution Porous media 

Notes

Acknowledgments

Antonio Rodríguez de Castro wishes to thank La Caixa Foundation , Arts et Métiers ParisTech and TOTAL S.A. for their financial support during his PhD thesis.

References

  1. Abidin, A.Z., Puspasari, T., Nugroho, W.A.: Polymers for enhanced oil recovery technology. Procedia Chem. 4, 11–16 (2012)CrossRefGoogle Scholar
  2. Ambari, A., Benhamou, M., Roux, S., Guyon, E.: Distribution des tailles des pores d’un milieu poreux déterminée par l’écoulement d‘un fluide à seuil. C. R. Acad. Sci. Paris t. 311(ll), 1291–1295 (1990)Google Scholar
  3. Argillier, J.-F., Dupas, A., Tabary, R., Henaut, I., Poulain, P., Rousseau, D., Aubry, T.: Impact of polymer mechanical degradation on shear and extensional viscosities: toward better injectivity forecasts in polymer flooding operations. Soc. Pet. Eng. (2013). doi: 10.2118/164083-MS Google Scholar
  4. Benmouffok-Benbelkacem, G., Caton, F., Baravian, C., Skali-Lami, S.: Non-linear viscoelasticity and temporal behavior of typical yield stress fluids. Carbopol, Xanthan and Ketchup. Rheol. Acta 49, 305–314 (2010)CrossRefGoogle Scholar
  5. Burlion, N., Bernard, D., Chen, D.: X-ray microtomography. Application to microstructure analysis of a cementitious material during leaching process. Cem. Concr. Res. 36, 346–357 (2006)CrossRefGoogle Scholar
  6. Carbonell, R.G.: Effect of pore distribution an flow segregation on dispersion in porous media. Chem. Eng. Sci. 34, 1031–1039 (1979)CrossRefGoogle Scholar
  7. Carnali, J.O.: A dispersed anisotropic phase as the origin of the weak-gel properties of aqueous xanthan gum. J. Appl. Polym. Sci. 43(5), 929–941 (1991)CrossRefGoogle Scholar
  8. Chauveteau, G.: Rodlike polymer solution flow through fine pores: influence of pore size on rheological behavior. J. Rheol. 26(2), 111–142 (1982)CrossRefGoogle Scholar
  9. Chauveteau, G., Nabzar, L., El Attar, L., Jacquin, C.: Pore structure and hydrodynamics in sandstones. SCA Conference Paper Number 9607 (1996)Google Scholar
  10. Darcy, H.J.: Les Fontaines Publiques de la Vue de Dijon. Libraire de Corps Impériaux des Ponts et Chausées et des Mines, Paris, pp. 590–594 (1856)Google Scholar
  11. Dario, A.F., Hortencio, L.M.A., Sierakowski, M.R., Neto, J.C.Q., Petri, D.F.S.: The effect of calcium salts on the viscosity and adsorption behavior of xanthan. Carbohydr. Polym. 84, 669–676 (2011)CrossRefGoogle Scholar
  12. Garcia-Ochoa, F., Santosa, V.E., Casasb, J.A., Gómez, E.: Xanthan gum: production, recovery, and properties. Biotechnol. Adv. 18, 549–579 (2000)CrossRefGoogle Scholar
  13. Giesche, H.: Mercury porosimetry : a general (practical) overview. Part. Part. Syst. Charact. 23, 1–11 (2006)CrossRefGoogle Scholar
  14. Iijima, M., Shinozaki, M., Hatakeyama, T., Takahashi, M., Hatakeyama, H.: AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydr. Polym. 68, 701–707 (2007)CrossRefGoogle Scholar
  15. Jones, D.M., Walters, K.: The behavior of polymer solutions in extension-dominated flows with applications to enhanced oil recovery. Rheol. Acta 28, 482–498 (1989)CrossRefGoogle Scholar
  16. Khodja, M.: Les fluides de forage: tude des performances et considerations environnementales. PhD thesis, Institut National Polytechnique de Toulouse (2008)Google Scholar
  17. Kozeny, J.: Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss., Wien 136(2a), 271–306 (1927)Google Scholar
  18. Lassen, C., Andersen, B.H., Maag, J., Maxson, P.: Options for Reducing Mercury Use in Products and Applications, and the Fate of Mercury Already Circulating in Society. European Commission, Directorate-General Environment (2008)Google Scholar
  19. Lindquist, W.B., Venkatarangan, A.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. Solid Earth 105(B9), 21509–21527 (2000)CrossRefGoogle Scholar
  20. López, X., Valvatne, P.H., Blunt, M.J.: Predictive network modelling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264, 256–265 (2003)CrossRefGoogle Scholar
  21. Malvault, G.: Détermination expérimentale de la distribution de taille de pores d’un milieu poreux par l’injection d’un fluide à seuil ou par analyse fréquentielle, PhD thesis, Arts et Métiers ParisTech (2013)Google Scholar
  22. Milas, M., Rinaudo, M.: Properties of the concentrated xanthan gum solutions. Polym. Bull. 10, 271–273 (1983)Google Scholar
  23. Mongruel, A., Cloitre, M.: Axisymmetric orifice flow for measuring the elongational viscosity of semi-rigid polymer solutions. J. Non Newton Fluid Mech. 110, 27–43 (2003)CrossRefGoogle Scholar
  24. Mungan, N.: Rheology and adsorption of aqueous polymer solutions. J. Can. Pet. Tech. 8, 45 (1969)Google Scholar
  25. Ogata, A., Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media. Fluid Movement in Earth Materials, Geological Survey Professional Paper 411-A. United States Government Printing Office, Washington (1961)Google Scholar
  26. Palaniraj, A., Jayaraman, V.: Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 106, 1–12 (2011)CrossRefGoogle Scholar
  27. Perkins, T.-K., Johnston, O.-C.: A review of diffusion and dispersion in porous media. Soc. Pet. Eng. J. 3, 70–83 (1963)CrossRefGoogle Scholar
  28. Prodanovic, M., Lindquist, W.B., Seright, R.S.: Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J. Colloid Interface Sci. 298, 282–297 (2006)CrossRefGoogle Scholar
  29. Prodanovic, M., Lindquist, W.B., Seright, R.S.: 3D image-based characterization of fluid displacement in a Berea core. Adv. Water Resour. 30, 214–226 (2007)CrossRefGoogle Scholar
  30. Rodríguez de Castro, A.: Flow Experiments of Yield Stress Fluids in Porous Media As a New Porosimetry Method. PhD thesis, Arts et Métiers ParisTech (2014)Google Scholar
  31. Rodríguez de Castro, A., Omari, A., Ahmadi-Sénichault, A., Bruneau, D.: Toward a new method of porosimetry: principles and experiments. Transp. Porous Media 101(3), 349–364 (2014)CrossRefGoogle Scholar
  32. Rodd, A.B., Dunstan, D.E., Boger, D.V.: Characterisation of xanthan gum solutions using dynamic light scattering and rheology. Carbohydr. Polym. 42, 159–174 (2000)CrossRefGoogle Scholar
  33. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K.: Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 84(1), 107–136 (2012)Google Scholar
  34. Sheng, J.J.: Modern Chemical Enhanced Oil Recovery. Theory and Practice, GPG. Elsevier, Boston (2011)Google Scholar
  35. Skelland, A.H.P.: Non-Newtonian Flow and Heat Transfer. Wiley, New York (1967)Google Scholar
  36. Song, K.-W., Kim, Y.-S., Chang, G.S.: Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers Polym. 7(2), 129–138 (2006)CrossRefGoogle Scholar
  37. Sorbie, K.S.: Polymer-Improved Oil Recovery. Blackie and Son Ltd, Glasgow (1991a)CrossRefGoogle Scholar
  38. Sorbie, K.S.: Rheological and transport effects in the flow of low-concentration xanthan solution through porous media. J. Colloid lnterface Sci. 145(I), 74–89 (1991b)CrossRefGoogle Scholar
  39. Wei, B., Romero-Zeron, L., Rodrigue, D.: Mechanical properties and flow behavior of polymers for enhanced oil recovery. J. Macromol. Sci. Part B Phys. 53(4), 625–644 (2014)CrossRefGoogle Scholar
  40. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)Google Scholar
  41. Withcomb, P.J., Macosko, C.W.: Rheology of xanthan gum. J. Rheol. 22, 493 (1978)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Antonio Rodríguez de Castro
    • 1
  • Abdelaziz Omari
    • 1
  • Azita Ahmadi-Sénichault
    • 1
  • Sabine Savin
    • 2
  • Luis-Fernando Madariaga
    • 2
  1. 1.TREFLE Department, Institut de Mécanique et d’Ingénierie de BordeauxArts et Métiers ParisTechTalenceFrance
  2. 2.Laboratoires Pétrophysique et EORTOTAL – CSTJFPauFrance

Personalised recommendations