Transport in Porous Media

, Volume 113, Issue 3, pp 431–456 | Cite as

Micro-continuum Approach for Pore-Scale Simulation of Subsurface Processes

Article

Abstract

The enormous growth in computational capabilities of recent years has made Navier–Stokes-based simulation of flow and transport in natural porous media possible. Because of the complex multiscale nature of porous media, however, full Navier–Stokes representation of the physics everywhere in the domain is not always feasible. Here, we employ, a filtering—or micro-continuum—approach to model the smallest length scales. The Darcy–Brinkman–Stokes (DBS) equation offers an appealing framework for this hybrid modeling. A general modeling framework based on the DBS equation is proposed. The approach is then used to bridge the gap between scales for several challenging problems, including flow in fractured media, pore-scale simulation with immersed boundary conditions, modeling of dissolution phenomena, and thermal evolution of oil shale.

Keywords

Pore-scale simulation Micro-continuum Darcy–Brinkman Multiscale Dissolution Oil shale pyrolysis 

Notes

Acknowledgments

We acknowledge the Office of Basic Energy Sciences Energy Frontier Research Center under Contract number DE-AC02-05CH11231 and the TOTAL STEMS project for financial support. We also thank the Stanford Center for Computational Earth & Environmental Sciences (CEES) for computational support.

References

  1. Allix, P., Burnham, A., Fowler, T., Herron, M., Kleinberg, R., Symington, B.: Coaxing oil from shale. Oilfield Rev. 22(4), 4–15 (2011). Winter 2011Google Scholar
  2. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks part i: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013a) (Benchmark problems, datasets and methodologies for the computational geosciences)Google Scholar
  3. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks part ii: computing effective properties. Comput. Geosci. 50, 33–43 (2013b) (Benchmark problems, datasets and methodologies for the computational geosciences)Google Scholar
  4. Angot, P., Bruneau, C.-H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)CrossRefGoogle Scholar
  5. Apourvari, S.N., Arns, C.H.: An assessment of the influence of micro-porosity for effective permeability using local flux analysis on tomographic images. In: International Petroleum Technology Conference, 19–22 January, Doha, Qatar (2014)Google Scholar
  6. Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sok, R.M., Pinczewski, W.V., Bakke, S., Berge, L.I., Oeren, P.-E., Knackstedt, M.A.: Pore-scale characterization of carbonates using X-ray microtomography. SPE J. 10(4), 475–484 (2005)CrossRefGoogle Scholar
  7. Bekri, S., Thovert, J.F., Adler, P.M.: Dissolution of porous media. Chem. Eng. Sci. 50(17), 2765–2791 (1995)CrossRefGoogle Scholar
  8. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)CrossRefGoogle Scholar
  9. Bousquet-Melou, P., Goyeau, B., Quintard, M., Fichot, F., Gobin, D.: Average momentum equation for interdendritic flow in a solidifying columnar mushy zone. Int. J. Heat Mass Transf. 45(17), 3651–3665 (2002)CrossRefGoogle Scholar
  10. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)Google Scholar
  11. Caers, J.: Modeling Uncertainty in the Earth Sciences. Wiley Online Library, Hoboken (2011)CrossRefGoogle Scholar
  12. Chen, L., Kang, Q., Viswanathan, H.S., Tao, W.-Q.: Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals. Water Resour. Res. 50(12), 9343–9365 (2014)CrossRefGoogle Scholar
  13. Cohen, C.E., Ding, D., Quintard, M., Bazin, B.: From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization. Chem. Eng. Sci. 63(12), 3088–3099 (2008)CrossRefGoogle Scholar
  14. Daccord, G., Lenormand, R.: Fractal patterns from chemical dissolution. Nature 325(6099), 41–43 (1987)CrossRefGoogle Scholar
  15. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In ACM SIGGRAPH Conference on Computer Graphics, Los Angeles (2001)Google Scholar
  16. Elkhoury, J.E., Ameli, P., Detwiler, R.L.: Dissolution and deformation in fractured carbonates caused by flow of co2-rich brine under reservoir conditions. Int. J. Greenh. Gas Control 16(Supplement 1), S203–S215 (2013). The IEAGHG Weyburn-Midale CO2 Monitoring and Storage ProjectCrossRefGoogle Scholar
  17. Fan, Y., Durlofsky, L., Tchelepi, H.A.: Numerical simulation of the in-situ upgrading of oil shale. SPE J. 15(2), 368–381 (2010)CrossRefGoogle Scholar
  18. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  19. Fogler, H.S., Lund, K., McCune, C.C., et al.: Predicting the flow and reaction of hcl/hf acid mixtures in porous sandstone cores. Soc. Petrol. Eng. J. 16(05), 248–260 (1976)CrossRefGoogle Scholar
  20. Fredd, C.N., Fogler, H.S.: Alternative stimulation fluids and their impact on carbonate acidizing. SPE J. 13(1), 34 (1998)CrossRefGoogle Scholar
  21. Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)CrossRefGoogle Scholar
  22. Goyeau, B., Lhuillier, D., Gobin, D., Velarde, M.G.: Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transf. 46(21), 4071–4081 (2003)CrossRefGoogle Scholar
  23. Guibert, R., Nazarova, M., Horgue, P., Hamon, G., Creux, P., Debenest, G.: Computational permeability determination from pore-scale imaging: sample size, mesh and method sensitivities. Transp. Porous Media 107(3), 641–656 (2015)CrossRefGoogle Scholar
  24. Guo, J., Quintard, M., Laouafa, F.: Upscaling and large-scale modeling of the dissolution of gypsum cavities. In: The 25th International Symposium on Transport Phenomena, 5 November 2014–7 November 2014, Krabi, Thailand (2014)Google Scholar
  25. Henri, D.: Fontaines publiques de la ville de Dijon. Librairie des Corps Impériaux des Ponts et Chaussés et des Mines (1856)Google Scholar
  26. Horgue, P., Prat, M., Quintard, M.: A penalization technique applied to the volume-of-fluid method: wettability condition on immersed boundaries. Comput. Fluids 100, 255–266 (2014)CrossRefGoogle Scholar
  27. Horgue, P., Soulaine, C., Franc, J., Guibert, R., Debenest, G.: An open-source toolbox for multiphase flow in porous media. Comput. Phys. Commun. 187, 217–226 (2015)CrossRefGoogle Scholar
  28. Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33(8), 1587–1597 (1990)CrossRefGoogle Scholar
  29. Huang, H., Li, X.: Pore-scale simulation of coupled reactive transport and dissolution in fractures and porous media using the level set interface tracking method. J. Nanjing Univ. 47(3), 235–251 (2011)Google Scholar
  30. Huber, C., Shafei, B., Parmigiani, A.: A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation. Geochim. Cosmochim. Acta 124, 109–130 (2014)CrossRefGoogle Scholar
  31. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1985)CrossRefGoogle Scholar
  32. Jasak, H.: Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. PhD thesis, Department of Mechanical Engineering Imperial College of Science, Technology and Medicine (1996)Google Scholar
  33. Kainourgiakis, M.E., Kikkinides, E.S., Galani, A., Charalambopoulou, G.C., Stubos, A.K.: Digitally reconstructed porous media: transport and sorption properties. In: Das, D.B., Hassanizadeh, S.M. (eds.) Upscaling Multiphase Flow in Porous Media, pp. 43–62. Springer, Netherlands (2005)CrossRefGoogle Scholar
  34. Kang, Q., Zhang, D., Chen, S.: Simulation of dissolution and precipitation in porous media. J. Geophys. Res. Solid Earth 108(B10), 1–5 (2003)CrossRefGoogle Scholar
  35. Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(2), 227–236 (2004)CrossRefGoogle Scholar
  36. Karimi-Fard, M., Gong, B., Durlofsky, L.J.: Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resour. Res. 42, 1–13 (2006)CrossRefGoogle Scholar
  37. Karimi-Fard, M., Firoozabadi, A.: Numerical simulation of water injection in fractured media using the discrete-fracture model and the galerkin method. SPE Reserv. Eval. Eng. 6(02), 117–126 (2003)CrossRefGoogle Scholar
  38. Khadra, K., Angot, P., Parneix, S., Caltagirone, J.-P.: Fictitious domain approach for numerical modelling of navier–stokes equations. Int. J. Numer. Methods Fluids 34(8), 651–684 (2000)CrossRefGoogle Scholar
  39. Khan, F., Enzmann, F., Kersten, M., Wiegmann, A., Steiner, K.: 3d simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and lbe solver. J. Soils Sediments 12(1), 86–96 (2011)CrossRefGoogle Scholar
  40. Kobchenko, M., Panahi, H., Renard, F., Dysthe, D.K., Malthe-Sørenssen, A., Mazzini, A., Scheibert, J., Jamtveit, B., Meakin, P.: 4d imaging of fracturing in organic-rich shales during heating. J. Geophys. Res. Solid Earth 116(B12), 1–9 (2011)CrossRefGoogle Scholar
  41. Kobchenko, M., Hafver, A., Jettestuen, E., Galland, O., Meakin, P., Dysthe, D.K., et al.: Drainage fracture networks in elastic solids with internal fluid generation. Europhys. Lett.: EPL 102(6), 66002 (2013)CrossRefGoogle Scholar
  42. Li, X., Huang, H., Meakin, P.: Level set simulation of coupled advection–diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res. 44(12), 1–17 (2008)Google Scholar
  43. Li, X., Huang, H., Meakin, P.: A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Transf. 53(13), 2908–2923 (2010)CrossRefGoogle Scholar
  44. Liu, M., Zhang, S., Mou, J., Zhou, F.: Wormhole propagation behavior under reservoir condition in carbonate acidizing. Transp. Porous Media 96(1), 203–220 (2013)CrossRefGoogle Scholar
  45. Luo, H., Laouafa, F., Guo, J., Quintard, M.: Numerical modeling of three-phase dissolution of underground cavities using a diffuse interface model. Int. J. Numer. Anal. Methods Geomech. 38, 1600–1616 (2014)Google Scholar
  46. Luo, H., Quintard, M., Debenest, G., Laouafa, F.: Properties of a diffuse interface model based on a porous medium theory for solid–liquid dissolution problems. Comput. Geosci. 16(4), 913–932 (2012)CrossRefGoogle Scholar
  47. Luo, H., Laouafa, F., Debenest, G., Quintard, M.: Large scale cavity dissolution: from the physical problem to its numerical solution. Eur. J. Mech. B Fluids 52, 131–146 (2015)CrossRefGoogle Scholar
  48. Maes, J., Muggeridge, A.H., Jackson, M.D., Quintard, M., Lapene, A.: Modelling in-situ upgrading of heavy oil using operator splitting method. Comput. Geosci. 20, 581–594 (2016)Google Scholar
  49. Maheshwari, P., Maxey, J., Balakotaiah, V.: Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acids. SPE Prod. Oper. 1–17 (2015)Google Scholar
  50. Maheshwari, P., Ratnakar, R.R., Kalia, N., Balakotaiah, V.: 3-d simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chem. Eng. Sci. 90, 258–274 (2013)CrossRefGoogle Scholar
  51. Marle, C.M.: Ecoulements monophasiques en milieu poreux. Rev. Inst. Francais du Petrole 22(10), 1471–1509 (1967)Google Scholar
  52. Menke, H.P., Bijeljic, B., Andrew, M.G., Blunt, M.J.: Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. Environ. Sci. Technol. 49(7), 4407–4414 (2015)CrossRefGoogle Scholar
  53. Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-ct images. Math. Geosci. 45(1), 103–125 (2013)CrossRefGoogle Scholar
  54. Neale, G., Nader, W.: Practical significance of brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52(4), 475–478 (1974)CrossRefGoogle Scholar
  55. Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, Berlin (2013)CrossRefGoogle Scholar
  56. Noiriel, C., Madé, B., Gouze, P.: Impact of coating development on the hydraulic and transport properties in argillaceous limestone fracture. Water Resourc. es research 43(9), 1–16 (2007)Google Scholar
  57. Noiriel, C., Gouze, P., Madé, B.: 3d analysis of geometry and flow changes in a limestone fracture during dissolution. J. Hydrol. 486, 211–223 (2013)CrossRefGoogle Scholar
  58. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid: I. theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)CrossRefGoogle Scholar
  59. Orgogozo, L., Renon, N., Soulaine, C., Hénon, F., Tomer, S.K., Labat, D., Pokrovsky, O.S., Sekhar, M., Ababou, R., Quintard, M.: An open source massively parallel solver for richards equation: mechanistic modelling of water fluxes at the watershed scale. Comput. Phys. Commun. 185(12), 3358–3371 (2014)CrossRefGoogle Scholar
  60. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective, volume 4 of Applied Geotechnics. Spon Press, London (2011)Google Scholar
  61. Panga, M.K.R., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51(12), 3231–3248 (2005)CrossRefGoogle Scholar
  62. Patankar, S.V.: Numerical Heat Transfer And Fluid Flow. Taylor & Francis, Washington (1980)Google Scholar
  63. Quintard, M., Whitaker, S.: Dissolution of an immobile phase during flow in porous media. Ind. Eng. Chem. Res 38(3), 833–844 (1999)CrossRefGoogle Scholar
  64. Slattery, J.C.: Flow of viscoelastic fluids through porous media. AIChE J. 13(6), 1066–1071 (1967)CrossRefGoogle Scholar
  65. Slattery, J.C.: Single-phase flow through porous media. AIChE J. 15(6), 866–872 (1969)CrossRefGoogle Scholar
  66. Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., Tchelepi, H.: The impact of sub-resolution porosity of X-ray microtomography images on the permeability. Transp. Porous Media 113, 227–243 (2016)Google Scholar
  67. Soulaine, C., Davit, Y., Quintard, M.: A two-pressure model for slightly compressible single phase flow in bi-structured porous media. Chem. Eng. Sci. 96, 55–70 (2013)CrossRefGoogle Scholar
  68. Swami, V., Clarkson, C.R., Settari, A.: Non-darcy flow in shale nanopores: do we have a final answer? In: SPE Canadian Unconventional Resources Conference. Society of Petroleum Engineers (2012)Google Scholar
  69. Szymczak, P., Ladd, A.J.C.: Microscopic simulations of fracture dissolution. Geophys. Res. Lett. 31(23), 1–4 (2004)CrossRefGoogle Scholar
  70. Szymczak, P., Ladd, A.J.C.: Wormhole formation in dissolving fractures. J. Geophys. Res. Solid Earth 114(B6), 1–22 (2009)CrossRefGoogle Scholar
  71. Tam, C.K.W.: The drag on a cloud of spherical particles in low reynolds number flow. J. Fluid Mech. 38(03), 537–546 (1969)CrossRefGoogle Scholar
  72. Trebotich, D., Graves, D.: An adaptive finite volume method for the incompressible Navier–Stokes equations in complex geometries. Commun. Appl. Math. Comput. Sci. 10(1), 43–82 (2015)CrossRefGoogle Scholar
  73. Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24(2), 195–203 (1981)CrossRefGoogle Scholar
  74. Vafai, K., Tien, C.L.: Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 25(8), 1183–1190 (1982)CrossRefGoogle Scholar
  75. Wakao, N., Smith, J.M.: Diffusion in catalyst pellets. Chem. Eng. Sci. 17(11), 825–834 (1962)CrossRefGoogle Scholar
  76. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. COMPUTERS IN PHYSICS 12, 620–631 (1998)Google Scholar
  77. Whitaker, S.: Flow in porous media i: a theoretical derivation of darcy’s law. Transp. Porous Media 1, 3–25 (1986). doi:10.1007/BF01036523 CrossRefGoogle Scholar
  78. Whitaker, S.: The Method of Volume Averaging. Klukwer Academic Publisher, Berlin (1999)CrossRefGoogle Scholar
  79. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013). 35th Year Anniversary IssueCrossRefGoogle Scholar
  80. Williams, B.B., Gidley, J.L., Schechter. R.S.: Acidizing fundamentals. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers of AIME (1979)Google Scholar
  81. Youtsos, M.S.K., Mastorakos, E., Cant, R.S.: Numerical simulation of thermal and reaction fronts for oil shale upgrading. Chem. Eng. Sci. 94, 200–213 (2013)CrossRefGoogle Scholar
  82. Zhan, X., Schwartz, L., Smith, W., Toksõz, N., Morgan, D.: Pore scale modeling of rock properties and comparison to laboratory measurements. In: SEG Houston 2009 International Exposition and Annual Meeting. Society of Exploration Geophysicists (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Energy Resources EngineeringStanford UniversityStanfordUSA

Personalised recommendations