Advertisement

Transport in Porous Media

, Volume 115, Issue 2, pp 327–344 | Cite as

Ageing Scher–Montroll Transport

  • Henning Krüsemann
  • Richard Schwarzl
  • Ralf MetzlerEmail author
Article

Abstract

We study the properties of ageing Scher–Montroll transport in terms of a biased subdiffusive continuous time random walk in which the waiting times \(\tau \) between consecutive jumps of the charge carriers are distributed according to the power law probability \(\psi (t)\simeq t^{-1-\alpha }\) with \(0<\alpha <1\). As we show, the dynamical properties of the Scher–Montroll transport depend on the ageing time span \(t_{a}\) between the initial preparation of the system and the start of the observation. The Scher–Montroll transport theory was originally shown to describe the photocurrent in amorphous solids in the presence of an external electric field, but it has since been used in many other fields of physical sciences, in particular also in the geophysical context for the description of the transport of tracer particles in subsurface aquifers. In the absence of ageing (\(t_{a}=0\)) the photocurrent of the classical Scher–Montroll model or the breakthrough curves in the groundwater context exhibit a crossover between two power law regimes in time with the scaling exponents \(\alpha -1\) and \(-1-\alpha \). In the presence of ageing a new power law regime and an initial plateau regime of the current emerge. We derive the different power law regimes and crossover times of the ageing Scher–Montroll transport and show excellent agreement with simulations of the process. Experimental data of ageing Scher–Montroll transport in polymeric semiconductors are shown to agree well with the predictions of our theory.

Keywords

Anomalous diffusion Ageing Scher–Montroll transport 

Notes

Acknowledgments

Helpful discussions with Dieter Neher are gratefully acknowledged. RM acknowledges financial support from the Academy of Finland within the Finland Distinguished Professor programme.

References

  1. Akimoto, T., Barkai, E.: Aging generates regular motions in weakly chaotic systems. Phys. Rev. E 87, 032915 (2013)CrossRefGoogle Scholar
  2. Allegrini, P., Bellazzini, J., Bramanti, G., Ignaccolo, M., Grigolini, P., Yang, J.: Scaling breakdown: a signature of aging. Phys. Rev. E. 66, 015101 (2002)CrossRefGoogle Scholar
  3. Barkai, E.: Fractional Fokker–Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)CrossRefGoogle Scholar
  4. Barkai, E.: Aging in subdiffusion generated by a deterministic dynamical system. Phys. Rev. Lett. 90, 104101 (2003)CrossRefGoogle Scholar
  5. Barkai, E., Cheng, Y.C.: Aging continuous time random walks. J. Chem. Phys. 118, 6167 (2003)CrossRefGoogle Scholar
  6. Barkai, E., Garini, Y., Metzler, R.: Strange kinetics of single molecules in living cells. Phys. Today 65, 29 (2012)CrossRefGoogle Scholar
  7. Bel, G., Barkai, E.: Weak ergodicity breaking in the continuous-time random walk. Phys. Rev. Lett. 94, 240602 (2005)CrossRefGoogle Scholar
  8. Berkowitz, B., Scher, H.: Anomalous transport in random fracture networks. Phys. Rev. Lett. 79, 4038 (1997)CrossRefGoogle Scholar
  9. Berkowitz, B., Scher, H., Silliman, S.E.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36, 149 (2000)CrossRefGoogle Scholar
  10. Berkowitz, B., Klafter, J., Metzler, R., Scher, H.: Physical pictures of transport in heterogeneous media: advection dispersion, random walk, and fractional derivative formulations. Water Resour. Res. 38, 1–9 (2002)CrossRefGoogle Scholar
  11. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006)CrossRefGoogle Scholar
  12. Bodrova, A., Chechkin, A.V., Cherstvy, A.G., Metzler, R.: Quantifying non-ergodic dynamics of force-free granular gases. Phys. Chem. Chem. Phys. 17, 21791 (2015)CrossRefGoogle Scholar
  13. Bouchaud, J.P.: Weak ergodicity breaking and ageing in disordered systems. J. Phys. I (Paris) 2, 1705 (1992)Google Scholar
  14. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 12 (1990)CrossRefGoogle Scholar
  15. Brokmann, X., Hermier, J.P., Messin, G., Desbiolles, P., Bouchaud, J.P., Dahan, M.: Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003)CrossRefGoogle Scholar
  16. Burov, S., Metzler, R., Barkai, E.: Aging and nonergodicity beyond the Khinchin theorem. Proc. Natl. Acad. Sci. USA 107, 13228 (2010)CrossRefGoogle Scholar
  17. Caspi, A., Granek, R., Elbaum, M.: Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85, 5655 (2000)CrossRefGoogle Scholar
  18. Cherstvy, A.G., Metzler, R.: Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys. 15, 20220 (2013)CrossRefGoogle Scholar
  19. Cherstvy, A.G., Metzler, R.: Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes. J. Chem. Phys. 14, 144105 (2015)CrossRefGoogle Scholar
  20. Davies, B.: Integral Transforms and Their Applications, vol. 41. Springer Verlag New York Inc, New York (2002)Google Scholar
  21. Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F., Cardarelli, F.: Probing short-range protein Brownian motion in the cytoplasm of living cells. Nature Commun. 5, 5891 (2014)CrossRefGoogle Scholar
  22. Donth, E.: The Glass Transition. Springer, Berlin (2001)CrossRefGoogle Scholar
  23. Edery, Y., Scher, H., Guadagnini, A., Berkowitz, B.: Origins of anomalous transport in heterogeneous media: structural and dynamic controls. Water Resour. Res. 50, 1490 (2014)CrossRefGoogle Scholar
  24. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (1971)Google Scholar
  25. Freundlich, H., Krüger, D.: Anomalous diffusion in true solution. Trans. Faraday Soc. 31, 906 (1935)CrossRefGoogle Scholar
  26. Godrèche, C., Luck, J.M.: Statistics of the occupation time of renewal processes. J. Stat. Phys. 104, 489 (2001)CrossRefGoogle Scholar
  27. Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006)CrossRefGoogle Scholar
  28. Goychuk, I.: Viscoelastic subdiffusion: generalised Langevin equation approach. Adv. Chem. Phys. 150, 187 (2012)Google Scholar
  29. Habdas, P., Schaar, D., Levitt, A.C., Weeks, E.R.: Forced motion of a probe particle near the colloidal glass transition. EPL 67, 477 (2004)CrossRefGoogle Scholar
  30. He, Y., Burov, S., Metzler, R., Barkai, E.: Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett. 101, 058101 (2008)CrossRefGoogle Scholar
  31. Henkel, M., Pleimling, M., Sanctuary, R. (eds.): Ageing and the Glass Transition. Springer, Berlin (2007)Google Scholar
  32. Herzog, R.O., Polotzky, A.: Die Diffusion einiger Farbstoffe. Z. Physik. Chem. 87, 449 (1914)Google Scholar
  33. Honigmann, A., Müller, V., Hell, S.W., Eggeling, C.: STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. Faraday Disc. 161, 77 (2013)CrossRefGoogle Scholar
  34. Jeon, J.H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L., Metzler, R.: In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011)CrossRefGoogle Scholar
  35. Jeon, J.H., Barkai, E., Metzler, R.: Noisy continuous time random walks. J. Chem. Phys. 139, 121916 (2013)CrossRefGoogle Scholar
  36. Jeon, J.H., Leijnse, N., Oddershede, L., Metzler, R.: Anomalous diffusion and power-law relaxation of the time averaged mean square displacement in worm-like micellar solutions. New J. Phys. 15, 045011 (2013)CrossRefGoogle Scholar
  37. Jeon, J.H., Chechkin, A.V., Metzler, R.: Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Phys. Chem. Chem. Phys. 16, 15811 (2014)CrossRefGoogle Scholar
  38. Jung, Y.J., Barkai, E., Silbey, R.J.: Lineshape theory and photon counting statistics for blinking quantum dots: a Lévy walk process. Chem. Phys. 284, 181 (2002)CrossRefGoogle Scholar
  39. Kepten, E., Bronshtein, I., Garini, Y.: Ergodicity convergence test suggests telomere motion obeys fractional dynamics. Phys. Rev. E 83, 041919 (2011)CrossRefGoogle Scholar
  40. Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524 (2000)CrossRefGoogle Scholar
  41. Krüsemann, H., Godec, A., Metzler, R.: First-passage statistics for aging diffusion in systems with annealed and quenched disorder. Phys. Rev. E 89, 040101 (2014)CrossRefGoogle Scholar
  42. Krüsemann, H., Godec, A., Metzler, R.: Ageing first passage time density in continuous time random walks and quenched energy landscapes. J. Phys. A 48, 285001 (2015)CrossRefGoogle Scholar
  43. Kursawe, J., Schulz, J.H.P., Metzler, R.: Transient aging in fractional Brownian and Langevin-equation motion. Phys. Rev. E 88, 062124 (2013)CrossRefGoogle Scholar
  44. Lubelski, A., Sokolov, I.M., Klafter, J.: Nonergodicity mimics inhomogeneity in single particle tracking. Phys. Rev. Lett. 100, 250602 (2008)CrossRefGoogle Scholar
  45. Magdziarz, M., Metzler, R., Szczotka, W., Zebrowski, P.: Correlated continuous-time random walks in external force fields. Phys. Rev. E 85, 051103 (2012)CrossRefGoogle Scholar
  46. Mandelbrot, B.B., van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422 (1968)CrossRefGoogle Scholar
  47. Manzo, C., van Zanten, T.S., Saha, S., Torreno-Pina, J.A., Mayor, S., Garcia-Parajo, M.F.: PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular organization of the cell membrane. Scientific Reports, vol. 4 (2014)Google Scholar
  48. Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys. Rev. Lett. 82, 3563–3567 (1999)CrossRefGoogle Scholar
  49. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)CrossRefGoogle Scholar
  50. Metzler, R., Klafter, J.: Boundary value problems for fractional diffusion equations. Phys. A 278, 107 (2000)CrossRefGoogle Scholar
  51. Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128 (2014)CrossRefGoogle Scholar
  52. Monthus, C., Bouchaud, J.P.: Models of traps and glass phenomenology. J. Phys. A 29, 3847 (1996)CrossRefGoogle Scholar
  53. Montroll, E.W., Weiss, G.H.: Random walks on lattices II. J. Math. Phys. 6, 167 (1965)CrossRefGoogle Scholar
  54. Reverey, J.F., Jeon, J.H., Bao, H., Leippe, M., Metzler, R., Selhuber-Unkel, C.: Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Scientific Reports, vol. 5 (2015)Google Scholar
  55. Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. A 110, 709–737 (1926)CrossRefGoogle Scholar
  56. Robert, R., Nguyen, T.H., Gallet, F., Wilhelm, C.: In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS One 4, e10046 (2010)CrossRefGoogle Scholar
  57. Scher, H., Montroll, E.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 15, 2455 (1975)CrossRefGoogle Scholar
  58. Schubert, M., Preis, E., Blakesley, J.C., Pingel, P., Scherf, U., Neher, D.: Mobility relaxation and electron trapping in a donor/acceptor copolymer. Phys. Rev. B 87, 024203 (2013)CrossRefGoogle Scholar
  59. Schulz, J.H.P., Barkai, E., Metzler, R.: Aging effects and population splitting in single-particle trajectory averages. Phys. Rev. Lett. 110, 020602 (2013)CrossRefGoogle Scholar
  60. Schulz, J.H.P., Barkai, E., Metzler, R.: Aging renewal theory and application to random walks. Phys. Rev. X 4, 011028 (2014)Google Scholar
  61. Shlesinger, M.F.: Asymptotic solutions of continuous time random walks. J. Stat. Phys. 5, 421 (1974)CrossRefGoogle Scholar
  62. Sibatov, R.T.: Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays. Phys. Scr. 84, 025701 (2011)CrossRefGoogle Scholar
  63. Sokolov, I.M., Klafter, J.: Field-induced dispersion in subdiffusion. Phys. Rev. Lett. 97, 140602 (2006)CrossRefGoogle Scholar
  64. Szymanski, J., Weiss, M.: Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103, 038102 (2009)CrossRefGoogle Scholar
  65. Tabei, S.M.A., Burov, S., Kim, H.J., Kuznetsov, A., Huynh, T., Jureller, J., Philipson, L.H., Dinner, A.R., Scherer, N.F.: Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. USA 110, 4911 (2013)CrossRefGoogle Scholar
  66. Tejedor, V., Bénichou, O., Voituriez, R., Jungmann, R., Simmel, F., Selhuber-Unkel, C., Oddershede, L., Metzler, R.: Quantitative analysis of single particle trajectories: mean maximal excursion method. Biophys. J. 98, 1364 (2010)CrossRefGoogle Scholar
  67. Weigel, A.V., Simon, B., Tamkun, M.M., Krapf, D.: Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl. Acad. Sci. USA 108, 6438 (2011)CrossRefGoogle Scholar
  68. Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87, 3518 (2004)CrossRefGoogle Scholar
  69. Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer. Addison Wesley Longman Publishing Co., Inc., Boston (1991)Google Scholar
  70. Wong, I.Y., Gardel, M.L., Reichman, D.R., Weeks, E.R., Valentine, M.T., Bausch, A.R., Weitz, D.A.: Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett. 92, 178101 (2004)CrossRefGoogle Scholar
  71. Xu, Q., Feng, L., Sha, R., Seemann, N.C., Chaikin, P.M.: Subdiffusion of a sticky particle on a surface. Phys. Rev. Lett. 106, 228102 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute for Physics & AstronomyUniversity of PotsdamPotsdam-GolmGermany
  2. 2.Physics DepartmentFree University of BerlinBerlinGermany

Personalised recommendations