Transport in Porous Media

, Volume 115, Issue 3, pp 411–433 | Cite as

In-Plane Effective Diffusivity in PEMFC Gas Diffusion Layers

  • Rinat R. Rashapov
  • Jeff T. Gostick


The in-plane effective diffusion coefficients in gas diffusion layers typically used in fuel cell electrodes were measured as a function of compression and hydrophobic polymer loading. This method was based on the transient diffusion of oxygen from air into an initially nitrogen purged porous sample and has proven to be accurate, fast, and straightforward. As anticipated, with higher compressions and higher PTFE loadings, effective diffusivity decreased, as a result of less pore space available for transport and because tortuosity increased. When plotted against compressed porosity, the effective diffusivity of untreated and treated materials for a given type of sample collapsed on top of each other, despite the simultaneous impact of PTFE loading and compression. It was possible to distinguish between the impact of PTFE and compression by plotting the data as tortuosity against compressed thickness. High compressions on the sample lead to irreversible damages to the fiber structure, resulting in decreased or unexpectedly low tortuosity. Finally, a percolation model was fitted through one of the tested materials and a reasonable agreement was observed for lower compression, but a fit to the entire data could not be achieved. This was attributed to fundamental structural changes occurring in the sample upon high compressions, an observation that helps to explain the general inability of theoretical tortuosity models to describe GDLs.


Effective diffusion coefficient Tortuosity Fuel cells Gas diffusion layer Fibrous media 

List of symbols


Concentration (%)


Diffusion coefficient (\(\hbox {cm}^{2}\hbox { s}^{-1}\))


Normalized effective diffusivity (–)


Diameter (m)


Length domain (m)


Time (s)


PTFE loading (wt%)


Spatial coordinate (m)

Greek symbols

\(\alpha \)

Fitting parameter (–)

\(\delta \)

Thickness (M)

\(\varepsilon \)

Porosity (–)

\(\varepsilon _p \)

Percolation threshold (–)

\(\rho \)

Density (\(\hbox {kg/m}^{3}\))

\(\tau \)

Tortuosity (–)














The funding provided by the Automotive Fuel Cell Cooperation (AFCC) and the Natural Sciences and Engineering Research Council (NSERC) of Canada is greatly appreciated. The authors also wish to thank SGL Group for donating GDL sample materials.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Astrath, N.G.C., Shen, J., Astrath, F.B.G., Zhou, J., Huang, C., Yuan, X.Z., Wang, H., Navessin, T., Liu, Z.S., Vlajnic, G., Bessarabov, D., Zhao, X.: Note: Determination of effective gas diffusion coefficients of stainless steel films with differently shaped holes using a Loschmidt diffusion cell. Rev. Sci. Instrum. 81, 046104 (2010)CrossRefGoogle Scholar
  2. Baker, D.R., Caulk, D.A., Neyerlin, K.C., Murphy, M.W.: Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J. Electrochem. Soc. 156, B991–B1003 (2009)CrossRefGoogle Scholar
  3. Barbir, F.: PEM Fuel Cells: Theory and Practice. Elsevier Academic Press, Amsterdam (2013)Google Scholar
  4. Bruggeman, DaG: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935)CrossRefGoogle Scholar
  5. Carrigy, N.B., Pant, L.M., Mitra, S., Secanell, M.: Knudsen diffusivity and permeability of PEMFC microporous coated gas diffusion layers for different polytetrafluoroethylene loadings. J. Electrochem. Soc. 160, F81–F89 (2013)CrossRefGoogle Scholar
  6. Çeçen, A., Wargo, E.A., Hanna, A.C., Turner, D.M., Kalidindi, S.R., Kumbur, E.C.: 3-D microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity. J. Electrochem. Soc. 159, B299–B307 (2012)CrossRefGoogle Scholar
  7. Clennell, M.B.: Tortuosity: a guide through the maze. Geol. Soc. Lond. Spec. Publ. 122, 299–344 (1997)CrossRefGoogle Scholar
  8. Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford [Eng] (1979)Google Scholar
  9. Das, P.K., Li, X., Liu, Z.-S.: Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation. Appl. Energy 87, 2785–2796 (2010)CrossRefGoogle Scholar
  10. Epstein, N.: On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44, 777–779 (1989)CrossRefGoogle Scholar
  11. Fishman, Z., Hinebaugh, J., Bazylak, A.: Microscale tomography investigations of heterogeneous porosity distributions of PEMFC GDLs. J. Electrochem. Soc. 157, B1643–B1650 (2010)CrossRefGoogle Scholar
  12. Flückiger, R., Freunberger, S.A., Kramer, D., Wokaun, A., Scherer, G.G., Büchi, F.N.: Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC. Electrochim. Acta 54, 551–559 (2008)CrossRefGoogle Scholar
  13. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461 (2013)CrossRefGoogle Scholar
  14. Gostick, J., Fowler, M., Pritzker, M., Ioannidis, M., Behra, L.: In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J. Power Sources 162, 228–238 (2006)CrossRefGoogle Scholar
  15. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)CrossRefGoogle Scholar
  16. Holman, J.P.: Experimental Methods for Engineers. McGraw-Hill, Boston (2001)Google Scholar
  17. Hwang, G.S., Weber, A.Z.: Effective-diffusivity measurement of partially-saturated fuel-cell gas-diffusion layers. J. Electrochem. Soc. 159, F683–F692 (2012)CrossRefGoogle Scholar
  18. Kramer, D., Freunberger, S.A., Flückiger, R., Schneider, I.A., Wokaun, A., Büchi, F.N., Scherer, G.G.: Electrochemical diffusimetry of fuel cell gas diffusion layers. J. Electroanal. Chem. 612, 63–77 (2008)CrossRefGoogle Scholar
  19. LaManna, J.M., Kandlikar, S.G.: Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers. Int. J. Hydrog. Energy 36, 5021–5029 (2011)CrossRefGoogle Scholar
  20. Lim, C., Wang, C.Y.: Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim. Acta 49, 4149–4156 (2004)CrossRefGoogle Scholar
  21. Mangal, P., Dumontier, M., Carrigy, N., Secanell, M.: Measurements of permeability and effective in-plane gas diffusivity of gas diffusion media under compression. ECS Trans. 64, 487–499 (2014)CrossRefGoogle Scholar
  22. Mangal, P., Pant, L.M., Carrigy, N., Dumontier, M., Zingan, V., Mitra, S., Secanell, M.: Experimental study of mass transport in PEMFCs: through plane permeability and molecular diffusivity in GDLs. Electrochim. Acta 167, 160–171 (2015)CrossRefGoogle Scholar
  23. Mathias, M.F., Roth, J., Fleming, J., Lehnert, W.: Diffusion media materials and characterisation. In: Handbook of Fuel Cells. John Wiley & Sons, Ltd (2010). doi: 10.1002/9780470974001.f303046
  24. Mehta, V., Cooper, J.S.: Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003)CrossRefGoogle Scholar
  25. Neale, G.H., Nader, W.K.: Prediction of transport processes within porous media: diffusive flow processes within an homogeneous swarm of spherical particles. AIChE J. 19, 112–119 (1973)CrossRefGoogle Scholar
  26. Ostadi, H., Rama, P., Liu, Y., Chen, R., Zhang, X.X., Jiang, K.: 3D reconstruction of a gas diffusion layer and a microporous layer. J. Membr. Sci. 351, 69–74 (2010)CrossRefGoogle Scholar
  27. Quick, C., Ritzinger, D., Lehnert, W., Hartnig, C.: Characterization of water transport in gas diffusion media. J. Power Sources 190, 110–120 (2009)CrossRefGoogle Scholar
  28. Ramos-Alvarado, B., Sole, J.D., Hernandez-Guerrero, A., Ellis, M.W.: Experimental characterization of the water transport properties of PEM fuel cells diffusion media. J. Power Sources 218, 221–232 (2012)CrossRefGoogle Scholar
  29. Rashapov, R., Imami, F., Gostick, J.T.: A method for measuring in-plane effective diffusivity in thin porous media. Int. J. Heat Mass Transf. 85, 367–374 (2015a)CrossRefGoogle Scholar
  30. Rashapov, R.R., Unno, J., Gostick, J.T.: Characterization of PEMFC gas diffusion layer porosity. J. Electrochem. Soc. 162, F603–F612 (2015b)CrossRefGoogle Scholar
  31. Sadeghi, E., Djilali, N., Bahrami, M.: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. J. Power Sources 196, 246–254 (2011)CrossRefGoogle Scholar
  32. Santamaria, A.D., Das, P.K., MacDonald, J.C., Weber, A.Z.: Liquid–water interactions with gas-diffusion-layer surfaces. J. Electrochem. Soc. 161, F1184–F1193 (2014)CrossRefGoogle Scholar
  33. Schulz, V.P., Wargo, E.A., Kumbur, E.C.: Pore-morphology-based simulation of drainage in porous media featuring a locally variable contact angle. Transp. Porous Med. 1–13 (2014). doi: 10.1007/s11242-014-0422-4
  34. Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007)CrossRefGoogle Scholar
  35. Shou, D., Fan, J., Ding, F.: Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells. J. Power Sources 225, 179–186 (2013)CrossRefGoogle Scholar
  36. Todd, D., Schwager, M., Mérida, W.: Three-dimensional anisotropic electrical resistivity of PEM fuel cell transport layers as functions of compressive strain. J. Electrochem. Soc. 162, F265–F272 (2015)CrossRefGoogle Scholar
  37. Tomadakis, M.M., Sotirchos, S.V.: Effective diffusivities and conductivities of random dispersions of nonoverlapping and partially overlapping unidirectional fibers. J. Chem. Phys. 99, 9820–9827 (1993a)CrossRefGoogle Scholar
  38. Tomadakis, M.M., Sotirchos, S.V.: Ordinary, transition, and Knudsen regime diffusion in random capillary structures. Chem. Eng. Sci. 48, 3323–3333 (1993b)CrossRefGoogle Scholar
  39. Utaka, Y., Iwasaki, D., Tasaki, Y., Wang, S.: Measurement of effective oxygen diffusivity in microporous media containing moisture. Heat Trans. Asian Res. 39, 262–276 (2010)Google Scholar
  40. Utaka, Y., Tasaki, Y., Wang, S., Ishiji, T., Uchikoshi, S.: Method of measuring oxygen diffusivity in microporous media. Int. J. Heat Mass Transf. 52, 3685–3692 (2009)CrossRefGoogle Scholar
  41. Vielstich, W., Lamm, A., Gasteiger, H.A., Yokokawa, H.: Handbook of fuel cells: fundamentals, technology, and applications. Wiley, Chichester, Hoboken (2003)Google Scholar
  42. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)CrossRefGoogle Scholar
  43. Zamel, N., Astrath, N.G.C., Li, X., Shen, J., Zhou, J., Astrath, F.B.G., Wang, H., Liu, Z.-S.: Experimental measurements of effective diffusion coefficient of oxygen–nitrogen mixture in PEM fuel cell diffusion media. Chem. Eng. Sci. 65, 931–937 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations