Advertisement

Transport in Porous Media

, Volume 112, Issue 2, pp 313–332 | Cite as

Multiphase, Multicomponent Flow in Porous Media with Local Thermal Non-equilibrium in a Multiphase Mixture Model

  • Franz LindnerEmail author
  • Michael Pfitzner
  • Christian Mundt
Article

Abstract

For multiphase, multicomponent flow, the multiphase mixture model of Wang and Cheng (Int J Heat Mass Trans 39(17):3607–3618, 1996) has been used in the literature. In our self-written solver, based on this mathematical background, we use a modified multiphase mixture model for a simple transpiration cooling application. In this modeling approach, we do not solve for every phase or component separately. Instead, we solve for mixture variables and thus only use a simple set of conservation equations, which is valid in the entire domain. The information of concentration of components and phase saturations is incorporated within the multiphase mixture variables and can be extracted out of them easily with arithmetic equations. It has been shown that this approach is completely equivalent to using the separate phase models. We implemented an augmentation to local thermal non-equilibrium; i.e., we allow for different fluid and solid temperatures locally. We show solutions for stationary cases of evaporation and discuss the effect of variation of heat input, inlet temperature, inlet mass flux and fraction of components.

Keywords

Porous medium Multicomponent fluid Evaporation  Local thermal non-equilibrium Mixture model 

List of Symbols

Latin Symbols

\(A^\alpha ,B^\alpha ,C^\alpha \)

Coefficients of Antoine equation of component \(\alpha \)

\(a_s \)

Specific surface of pores Open image in new window

\(b_{sf}\)

Material-fluid parameter for boiling heat flux

\(c_{i}\)

Constants

\(c_{p}\)

Isobaric specific heat capacity Open image in new window

\(d_p\)

Characteristic size of porous medium \(({\mathrm {m}})\)

\(D_c\)

Capillary diffusion coefficient Open image in new window

f

Hindrance function

\(\mathbf g \)

Gravity vector Open image in new window

h

Specific enthalpy Open image in new window

H

Volumetric enthalpy Open image in new window

\(h_{fg}\)

Enthalpy of vaporization Open image in new window

\({\bar{h}}_{s\,l}\)

Mean heat transfer coefficient of solid and liquid phase Open image in new window

\({\bar{h}}_{s\,v}\)

Mean heat transfer coefficient of solid and vapor phase Open image in new window

J

Leverett J-function

\(\mathbf j _k\)

Diffusive mass flux of phase k within the multiphase mixture Open image in new window

\(k \)

Heat conductivity Open image in new window

K

Permeability tensor \(({\mathrm {m}}^2)\)

\(k_r\)

Relative permeability

M

Molar mass Open image in new window

m

Mass \(({\mathrm {kg}})\)

\(\dot{m}\)

Mass flux Open image in new window

n

Constant, number of moles \(({\mathrm {mol}})\), index for iterations

nx

Number of cells

p

Pressure \(({\mathrm {Pa}})\)

pol

Polynomial to approximate H as a function of Open image in new window

\(p^\alpha \)

Partial pressure of component \(\alpha \) \(({\mathrm {Pa}})\)

\(p^{\alpha ,0}\)

Equilibrium vapor pressure of component \(\alpha \,({\mathrm {Pa}})\)

\(p_c\)

Capillary pressure (phase pressure difference) \(({\mathrm {Pa}})\)

q

Term in Taylor series expansion for temperature \(({\mathrm {K}})\)

\(\dot{q}_{sf}\)

Heat exchange between solid and fluid phase Open image in new window

\(\dot{q}_\text {boil}\)

Additional heat exchange during boiling Open image in new window

\(\dot{q}_\text {total}\)

Net heat flux into the fluid Open image in new window

\(\dot{q}\)

Heat flux at outlet boundary Open image in new window

\(\mathbf r \)

Right-hand side of discretization system

\(s_k\)

Saturation of phase k

s

Short for \(s_l\), saturation of liquid phase

T

Temperature \((^\circ {\mathrm {C}})\)

\(\mathbf u \)

Velocity vector Open image in new window

V

Volume \(({\mathrm {m}}^3)\)

w

Mass fraction

x

Coordinate \(({\mathrm {m}})\), molar fraction

Nu

Nusselt number

Pr

Prandtl number

\(\mathcal {L}\)

Characteristic length \(({\mathrm {m}})\)

Greek Symbols

\(\varXi \)

Constant for volumetric enthalpy

\(\phi \)

Porosity

\(\gamma _h\)

Advection correction coefficient

\(\gamma _\rho \)

Density correction coefficient

\(\lambda \)

Relative mobility

\(\mu \)

Dynamic viscosity \(({\mathrm {Pa}}\,{\mathrm {s}})\)

\(\nu \)

Kinematic viscosity Open image in new window

\(\varOmega \)

Cell length, 1d \(({\mathrm {m}})\)

\(\varrho \)

Density Open image in new window

\(\sigma \)

Surface tension Open image in new window

\(\zeta \)

Measure for global energy conservation

Superscripts

\(\alpha \)

General component

n

Iteration number

(m)

m-th derivation

Subscripts

\(\text {boil}\)

Boiling

\(\text {bubble}\)

At bubble point

\(\text {dew}\)

At dew point

\(\text {dryout}\)

At dryout state

\(\text {eff}\)

Effective

f

Fluid

i

Discrete value

\(\text {in}\)

At inlet

k

General phase

l

Liquid phase

\(\text {norm}\)

Normalized

\(\text {exit}\)

At exit

s

Solid phase

\(\text {sat}\)

At saturation state

\(\text {total}\)

Total value

v

Vapor phase

Notes

Acknowledgments

This work was developed during a research project with Institut für Technik Intelligenter Systeme (ITIS GmbH) and Institute for Thermodynamics at University of the Federal Armed Forces, Munich.

References

  1. Adenakan, A.E., et al.: Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface numerical model formulation. Water Resour. Res. 29, 3727–3740 (1993)CrossRefGoogle Scholar
  2. Alomar, O.R., et al.: Numerical simulation of complete liquid-vapour phase change process inside porous media using smoothing of diffusion coefficient. Int. J. Therm. Sci. 86, 408–420 (2014). doi: 10.1016/j.ijthermalsci.2014.08.003 CrossRefGoogle Scholar
  3. Bear, J.: Modelling and Applications of Transport Phenomena in Porous Media, vol. 5. Springer, Netherlands (1991)Google Scholar
  4. Brennen, C.: Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  5. Cheng, P., et al.: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media part II: numerical simulation of the transport of organic compounds in the subsurface. Int. J. Heat Mass Trans. 39, 3619–3632 (1996)CrossRefGoogle Scholar
  6. Crone, S: Nicht-isotherme mehrphasige mehrkomponentenströmungen mit phasenwechsel in porösen medien, Universität Dortmund (2002)Google Scholar
  7. Falta, R.W. et al.: T2voc user’s guide. Tech. rep, Lawrence Berkeley National Laboratory (1995)Google Scholar
  8. Flemisch, B., et al.: DuMu\(^{\rm x}\): Dune for multi-Phase, Component, Scale, Physics,. flow and transport in porous media. Adv. Water Resour. 34, 1102–1112 (2011)CrossRefGoogle Scholar
  9. Ghafir, R., Lauriat, G.: Forced convection heat transfer with evaporation in a heat generating porous medium. J. Porous Media 4(4), 309–322 (2001)Google Scholar
  10. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)CrossRefGoogle Scholar
  11. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, Berlin (1999)Google Scholar
  12. Kolditz, O., et al.: Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67(2), 589–599 (2012). doi: 10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  13. Leverett, M.: Capillary behavior in porous solids. Trans. AIME Pet. Eng. Div. 142, 152–169 (1941)CrossRefGoogle Scholar
  14. Lie, K.A., et al.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012)CrossRefGoogle Scholar
  15. Lindner, F. et al.: Fluid flow with phase change in vertical porous channels with local thermal non-equilibrium in a two-phase mixture model. In: Proceedings of the 5th International Conference on Porous Media and its Applications in Science and Engineering. ICPM5 (2014)Google Scholar
  16. Lindner, F., et al.: Fluid flow and heat transfer with phase change and local thermal non-equilibrium in vertical porous channels. Transp. Porous Media 106(1), 201–220 (2015). doi: 10.1007/s11242-014-0396-2
  17. Lindner, F.,et al.: Transpiration cooling with local thermal non-equilibrium: model comparison in multiphase flow in porous media. J. Porous Media Rev. 19 (2016)Google Scholar
  18. Linstrom, P.J., Mallard, W.G. (eds.): NIST Chemistry WebBook, NIST Standard Reference Database Number 69, p. 20899. National Institute of Standards and Technology, Gaithersburg (2015)Google Scholar
  19. MATLAB: Matlab release 2013a. The MathWorks Inc, Natick, Massachusetts, United States (2013)Google Scholar
  20. Najjari, M., Ben Nasrallah, S.: Numerical study of liquid thermal pumping in porous media. J. Porous Media 8(6), 599–612 (2005a)CrossRefGoogle Scholar
  21. Najjari, M., Ben Nasrallah, S.: Numerical study of the effects of geometric dimensions on liquid-vapor phase change and free convection in a rectangular porous cavity. J. Porous Media 8(1), 1–12 (2005b)CrossRefGoogle Scholar
  22. Najjari, M., Ben Nasrallah, S.: Liquid-vapor phase-change and mixed convection in a porous layer discretely heated. J. Porous Media 9(7), 671–681 (2006)CrossRefGoogle Scholar
  23. Nuske, P., et al.: Non-equilibrium in multiphase multicomponent flow in porous media: An evaporation example. Int. J. Heat Mass Trans. 74, 128–142 (2014). doi: 10.1016/j.ijheatmasstransfer.2014.03.011 CrossRefGoogle Scholar
  24. Patankar, S.: Numerical Heat Transfer and Fluid Flow Series in Computational Methods in Mechanics and Thermal Sciences. Taylor & Francis Inc (1980)Google Scholar
  25. Peterson, G.P., Chang, C.S.: Heat transfer anaylsis and evaluation for two-phase flow in porous-channel heat sinks. Numer. Heat Transf Part A Appl. 31(2), 113–130 (1997)CrossRefGoogle Scholar
  26. Pruzan, D., et al.: Two-phase flow and dryout in a screen wick saturated with a fluid mixture. Int. J. Heat Mass Transf. 33(4), 673–681 (1990). doi: 10.1016/0017-9310(90)90166-R CrossRefGoogle Scholar
  27. Shi, J., Wang, J.: A numerical investigation of transpiration cooling with liquid coolant phase change. Transp. Porous Media 87, 703–716 (2011)CrossRefGoogle Scholar
  28. Wang, C.: A fixed-grid numerical algorithm for two-phase flow and heat transfer in porous media. Numer.Heat Transf. Part B Fundam. 32(1), 85–105 (1997)CrossRefGoogle Scholar
  29. Wang, C., Cheng, P.: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media. part I: Model development. Int.J. Heat Mass Transf. 39(17), 3607–3618 (1996)CrossRefGoogle Scholar
  30. Wei, K., et al.: Model discussion of transpiration cooling with boiling. Transp. Porous Media 94, 303–318 (2012)CrossRefGoogle Scholar
  31. Xue, G.: Numerical methods for multiphysics, multiphase, and multicomponent models for fuel cells, The Pennsylvania State University (2008)Google Scholar
  32. Yuki, K., et al.: Numerical investigation of thermofluid flow characteristics with phase change against high heat flux in porous media. J. Heat Transf. 130(1), 012602-1–012602-12 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Franz Lindner
    • 1
    Email author
  • Michael Pfitzner
    • 1
  • Christian Mundt
    • 1
  1. 1.Department of Aerospace Engineering, Institute for ThermodynamicsUniversity of the Federal Armed Forces MunichMunichGermany

Personalised recommendations