Transport in Porous Media

, Volume 110, Issue 1, pp 157–169 | Cite as

A Sensitivity Study of the Effect of Image Resolution on Predicted Petrophysical Properties

  • Nayef Alyafei
  • Ali Qaseminejad Raeini
  • Adriana Paluszny
  • Martin J. Blunt


Micro-CT scanning is a nondestructive technique that can provide three-dimensional images of rock pore structure at a resolution of a few microns. We compute petrophysical properties on three-dimensional images of benchmark rocks: two sandstones (Berea and Doddington) and two limestones (Estaillades and Ketton). We take scans at a voxel size of approximately 2.7 \(\upmu \hbox {m}\) and with \(1024^3\) voxels for both sandstone and limestone rocks. We numerically upscale the images to image sizes of \(512^3, 256^3\) and \(128^3\), representing voxel sizes of around 5.4, 10.8, and 21.6 \(\upmu \hbox {m}\) respectively, covering the same domains with coarser resolution. We calculate porosity and permeability on these images by using direct simulation and by extracting geometrical equivalent networks. We find that the predicted porosity is fairly insensitive to resolution for sandstones studied with the selected range of resolutions but sensitive for limestones with lower porosity for larger voxel sizes. For the permeability predictions, we do not observe a clear trend in permeability as a function of voxel size; however, sandstones, roughly, have comparable permeability regardless of the voxel size. On the other hand, for limestones, we generally see a decreasing trend in permeability as a function of upscaled voxel size.


Pore-scale modeling Image resolution Petrophysics Micro-CT Upscaling 



We would like to acknowledge funding from the Qatar Carbonates and Carbon Storage Research Centre, QCCSRC, which is supported jointly by Qatar Petroleum, Shell and the Qatar Science and Technology Park.


  1. Al-Kharusi, A.S., Blunt, M.J.: Network extraction from sandstone and carbonate pore space images. J. Petrol. Sci. Eng. 56, 219–231 (2007)CrossRefGoogle Scholar
  2. Alyafei, N., Gharbi, O., Raeini, A.Q., Yang, J., Iglauer, S., Blunt, M.J.: Influence of micro-computed tomography image resolution on the predictions of petrophysical properties. In: International Petroleum Technology Conference (2013)Google Scholar
  3. Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67(5), 1396–1405 (2002)CrossRefGoogle Scholar
  4. Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sok, R.M., Pinczewski, W.V., Bakke, S., Berge, L.I., Øren, P., Knackstedt, M.A.: Pore scale characterization of carbonates using X-ray microtomography. SPE J. 10(4), 1–10 (2005)CrossRefGoogle Scholar
  5. Ashton, M.: The stratigraphy of the Lincolnshire Limestone Formation (Bajocian) in Lincolnshire and Rutland (Leicestershire). Proc. Geol. Assoc. 91, 203–223 (1980)CrossRefGoogle Scholar
  6. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)CrossRefGoogle Scholar
  7. Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)CrossRefGoogle Scholar
  8. Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18(8), 1016–1022 (1979)CrossRefGoogle Scholar
  9. Dunsmuir, J.H., Ferguson, S.R., D’Amico, K.L., Stokes, J.P.: X-ray microtomography: a new tool for the characterization of porous media. In: SPE Annual Technical Conference and Exhibition (1991)Google Scholar
  10. Dullien, F.A.L.: Porous Media. Fluid Transport and Pore Structure. Academic, San Diego (1992)Google Scholar
  11. Gerbaux, O., Buyens, F., Mourzenko, V.V., Memponteil, A., Vabre, A., Thovert, J.-F., Adler, P.M.: Transport properties of real metallic foams. J. Colloid Interface Sci. 342, 155–165 (2010)CrossRefGoogle Scholar
  12. Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual \(CO_2\) imaged with X-ray micro-tomography. Geophys. Res. Lett. 38(21), L21403 (2011)Google Scholar
  13. Iglauer, S., Paluszny, A., Blunt, M.J.: Simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ X-ray micro-tomography. Fuel 103, 905–914 (2013)CrossRefGoogle Scholar
  14. Keemhm, Y., Mukerji, T.: Permeability and relative permeability from digital rocks: Issues on grid resolution and representative elementary volume. In: Society of Exploration Geophysicists (2004)Google Scholar
  15. Lindquist, W.B., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A 24(7), 593–599 (1999)CrossRefGoogle Scholar
  16. Mostaghimi, P., Bijeljic, B., Blunt, M.J.: Simulation of flow and dispersion on pore-space images. SPE J. 17(4), 1131–1141 (2012)CrossRefGoogle Scholar
  17. Münch, B., Trtik, P., Marone, F., Stampanoni, M.: Stripe and ring artefact removal with combined wavelet—Fourier filtering. Opt. Express 17(10), 8567–8591 (2009)CrossRefGoogle Scholar
  18. Øren, P., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)CrossRefGoogle Scholar
  19. Otsu, N.: An automatic threshold selection method based on discriminate and least squares criteria. Denshi Tsushin Gakkai Ronbunshi 63, 349–356 (1979)Google Scholar
  20. Peng, S., Hu, Q., Dultz, S., Zhang, M.: Using X-ray computed tomography in pore structure characterization for a berea sandstone: resolution effect. J. Hydrol. 472, 254–261 (2012)CrossRefGoogle Scholar
  21. Pepper, J.F., de Witt, W., Demarest, D.F.: Geology of the Bedford Shale and Berea Sandstone in the Appalachian basin. U.S. Geological Survey (1954)Google Scholar
  22. Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Numerical modelling of sub-pore scale events in two-phase flow through porous media. Transp. Porous Media 101(2), 191–213 (2014)CrossRefGoogle Scholar
  23. Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media 94(2), 487–504 (2012)CrossRefGoogle Scholar
  24. Ryazanov, A.V., van Dijke, M.I.J., Sorbie, K.S.: Two-phase pore-network modelling: existence of oil layers during water invasion. Transp. Porous Media 80(1), 79–99 (2009)CrossRefGoogle Scholar
  25. Santarelli, F.J., Brown, E.T.: Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 26(5), 401–413 (1989)CrossRefGoogle Scholar
  26. Silin, D.B., Jin, G., Patzek, T.W.: Robust determination of pore space morphology in sedimentary rocks. In: SPE Annual Technical Conference and Exhibition (2003)Google Scholar
  27. Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001–2004 (1994)CrossRefGoogle Scholar
  28. Tanino, Y., Blunt, M.J.: Capillary trapping in sandstones and carbonates: dependence on pore structure. Water Resour. Res. 48(8), W08525 (2012)Google Scholar
  29. Thovert, J.-F., Yousefian, F., Spanne, P., Jacquin, G.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63, 061307 (2001)CrossRefGoogle Scholar
  30. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDE’s: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)CrossRefGoogle Scholar
  31. Valvatne, P.H., Blunt, M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40(7), W07406 (2004)Google Scholar
  32. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)CrossRefGoogle Scholar
  33. Wildenschild, D., Vaz, C.M.P., Rivers, M.L., Rikard, D., Christensen, B.S.B.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3), 285–297 (2002)CrossRefGoogle Scholar
  34. Wildenschild, D., Hopmans, J.W., Rivers, M.L., Kent, A.J.R.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4(1), 112–126 (2005)CrossRefGoogle Scholar
  35. Wright, V.P., Platt, N.H., Marriott, S.B., Beck, V.H.: A classification of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassic-Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sed. Geol. 100, 143–158 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Nayef Alyafei
    • 1
  • Ali Qaseminejad Raeini
    • 1
  • Adriana Paluszny
    • 1
  • Martin J. Blunt
    • 1
  1. 1.Department of Earth Science and EngineeringImperial College LondonLondonUK

Personalised recommendations