Transport in Porous Media

, Volume 106, Issue 3, pp 595–610 | Cite as

Free Convection in a Square Cavity Filled with a Porous Medium Saturated by Nanofluid Using Tiwari and Das’ Nanofluid Model

  • M. A. Sheremet
  • T. Grosan
  • I. PopEmail author


Free convection in a square differentially heated porous cavity filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation. The Tiwari and Das’ nanofluid model with new more realistic empirical correlations for the physical properties of the nanofluids has been used for numerical analysis. The governing equations have been solved numerically on the basis of a second-order accurate finite difference method. The developed algorithm has been validated by direct comparisons with previously published papers and the results have been found to be in good agreement. The results have been presented in terms of the streamlines, isotherms, local, and average Nusselt numbers at left vertical wall at a wide range of key parameters.


Free convection Square cavity Porous media Nanofluids  Numerical method 



This work of M.A. Sheremet was conducted as a government task of the Ministry of Education and Science of the Russian Federation, Project Number 13.1919.2014/K.


  1. Abu-Nada, E., Oztop, H.F.: Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 30, 669–678 (2009)Google Scholar
  2. Aleshkova, I.A., Sheremet, M.A.: Unsteady conjugate natural convection in a square enclosure filled with a porous medium. Int. J. Heat Mass Transf. 53, 5308–5320 (2010)CrossRefGoogle Scholar
  3. Bagchi, A., Kulacki, F.A.: Natural Convection in Superposed Fluid-Porous Layers. Springer, New York (2014)CrossRefGoogle Scholar
  4. Baytas, A.C., Pop, I.: Free convection in oblique enclosures filled with a porous medium. Int. J. Heat Mass Transf. 42, 1047–1057 (1999)CrossRefGoogle Scholar
  5. Beckermann, C., Viskanta, R., Ramadhyani, S.: A numerical study of non-Darcian natural convection in a vertical enclosure filled with a porous medium. Numer. Heat Transfer 10, 446–469 (1986)CrossRefGoogle Scholar
  6. Bejan, A.: On the boundary layer regime in a vertical enclosure filled with a porous medium. Lett. Heat Mass Transf. 6, 82–91 (1979)CrossRefGoogle Scholar
  7. Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)CrossRefGoogle Scholar
  8. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Ann. Phys. 24, 636–679 (1935)CrossRefGoogle Scholar
  9. Celli, M.: Non-homogeneous model for a side heated square cavity filled with a nanofluid. Int. J. Heat Fluid Flow 44, 327–355 (2013)CrossRefGoogle Scholar
  10. Chamkha, A.J., Ismael, M.A.: Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int. J. Therm. Sci. 67, 135–151 (2013)CrossRefGoogle Scholar
  11. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA. ASME, FED 231/MD, vol. 66, pp. 99–105 (1995)Google Scholar
  12. Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T.: Nanofluids: Science and Technology. Wiley, New Jersey (2007)CrossRefGoogle Scholar
  13. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRefGoogle Scholar
  14. Ghasemi, B., Aminossadati, S.M.: Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux. Int. J. Therm. Sci. 49, 1–9 (2010)CrossRefGoogle Scholar
  15. Godson, L., Raja, B., Lal, D.M., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)CrossRefGoogle Scholar
  16. Gross, R., Bear, M.R., Hickox, C.E.: The application of flux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium. In: Proceedings 7th Int. Heat Transfer Conference, San Francisco (1986)Google Scholar
  17. Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)Google Scholar
  18. Jansen, J.D.: A Systems Description of Flow Through Porous Media. Springer, New York (2013)CrossRefGoogle Scholar
  19. Jou, R.Y., Tzeng, S.C.: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transfer 33, 727–736 (2006)CrossRefGoogle Scholar
  20. Kakaç, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)CrossRefGoogle Scholar
  21. Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)CrossRefGoogle Scholar
  22. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Transf. 46, 3639–3653 (2003)CrossRefGoogle Scholar
  23. Kuznetsov, A.V., Nield, D.A.: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Trans. Porous Media 85, 941–951 (2010)CrossRefGoogle Scholar
  24. Kuznetsov, A.V., Nield, D.A.: The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 65, 682–685 (2013)CrossRefGoogle Scholar
  25. Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 582–594 (2013)CrossRefGoogle Scholar
  26. Manole, D.M., Lage, J.L.: Numerical benchmark results for natural convection in a porous medium cavity. Heat Mass Transf. Porous Media 105, 44–59 (1992)Google Scholar
  27. Maxwell-Garnet, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. A 203, 385–420 (1904)CrossRefGoogle Scholar
  28. Moya, S.L., Ramos, E., Sen, M.: Numerical study of natural convection in a tilted rectangular porous material. Int. J. Heat Mass Transf. 30, 630–645 (1987)CrossRefGoogle Scholar
  29. Muthtamilselvan, M., Kandaswamy, P., Lee, L.: Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun. Nonlinear Sci. Numer. Simul. 15, 1501–1510 (2010)CrossRefGoogle Scholar
  30. Nield, D.A., Bejan, A.: Convection in Porous Media (4th edition). Springer, New York (2013)CrossRefGoogle Scholar
  31. Nield, D.A., Kuznetsov, A.V.: The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)CrossRefGoogle Scholar
  32. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)CrossRefGoogle Scholar
  33. Ögüt, E.B.: Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int. J. Therm. Sci. 48, 2063–2073 (2009)CrossRefGoogle Scholar
  34. Ögüt, E.B.: Heat transfer of water-based nanofluids with natural convection in an inclined square enclosure. J. Therm. Sci. Technol. 30, 23–33 (2010)Google Scholar
  35. Oztop, H.F., Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)CrossRefGoogle Scholar
  36. Patel, H.E., Das, S.K., Sundararajan, T., Sreekumaran, A., George, B., Pradeep, T.: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl. Phys. Lett. 83, 2931–2933 (2003)CrossRefGoogle Scholar
  37. Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)Google Scholar
  38. Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)CrossRefGoogle Scholar
  39. Santra, A.K., Sen, S., Chakraborty, N.: Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. Int. J. Therm. Sci. 47, 1113–1122 (2008)CrossRefGoogle Scholar
  40. Sheremet, M.A., Trifonova, T.A.: Unsteady conjugate natural convection in a vertical cylinder partially filled with a porous medium. Numer. Heat Transfer Part A 64, 994–1015 (2013)CrossRefGoogle Scholar
  41. Sheremet, M.A., Grosan, T., Pop, I.: Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model. J. Heat Transf. 136, 082501 (2014)CrossRefGoogle Scholar
  42. Sheremet, M.A., Pop, I.: Thermo-Bioconvection in a square porous cavity filled by oxytactic microorganisms. Transp Porous Media 103, 191–205 (2014)CrossRefGoogle Scholar
  43. Sheremet, M.A., Pop, I.: Conjugate natural convection in a porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 79, 137–145 (2014)CrossRefGoogle Scholar
  44. Sun, Q., Pop, I.: Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int. J. Therm. Sci. 50, 2141–2153 (2011)CrossRefGoogle Scholar
  45. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)CrossRefGoogle Scholar
  46. Vadasz, P. (ed.): Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, Berlin (2008)Google Scholar
  47. Vafai, K. (ed.): Handbook of Porous Media, 2nd edn. Taylor & Francis, New York (2005)Google Scholar
  48. Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Tokyo (2010)CrossRefGoogle Scholar
  49. Walker, K.L., Homsy, G.M.: Convection in a porous cavity. J. Fluid Mech. 87, 338–363 (1978)CrossRefGoogle Scholar
  50. Wen, D., Lin, G., Vafaei, S., Zhang, K.: Review of nanofluids for heat transfer applications. Particuology 7, 141–150 (2011)CrossRefGoogle Scholar
  51. Wong, K.V., Leon, O.D.: Applications of nanofluids: current and future. Adv. Mech. Eng. Article ID 519659 (2010), 11 pages, doi: 10.1155/2010/519659
  52. Yu, W., Choi, S.U.S.: The role of interfacial layer in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res. 5, 167–171 (2003)CrossRefGoogle Scholar
  53. Yu, W., France, D.M., Routbort, J.L., Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Theoretical Mechanics, Faculty of Mechanics and MathematicsTomsk State UniversityTomskRussia
  2. 2.Institute of Power EngineeringTomsk Polytechnic UniversityTomskRussia
  3. 3.Department of Applied MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations