Transport in Porous Media

, Volume 106, Issue 3, pp 523–544 | Cite as

Permeability of Two-Component Granular Materials

  • Hugh Daigle
  • Julia S. Reece


We expanded an existing model for permeability in mudrocks and shaly sands to include computation of effective grain radius and the Archie’s law parameter \(m\) in granular media composed of two different grain sizes. We found that the effective grain radius is the harmonic mean of the endmember grain radii and that \(m\) can be computed as the geometric mean of the endmember \(m\) values. We tested our model with three-dimensional lattice-Boltzmann simulations of flow through dilute and concentrated systems, and with comparison to measurements of laboratory-prepared and natural samples as well as field data. Modeled permeabilities matched the simulated and measured permeabilities over a wide range of porosities, grain sizes, and grain shapes. We additionally found that the model is independent of grain packing and aspect ratio, as these parameters only affect the endmember \(m\) values. Our predicted permeabilities generally fall within previously determined bounds, and we derive approximations for permeability as a function of endmember permeability for cases when endmember \(m\) values are equal and when endmember grain radii are very different. Our results advance our understanding of permeability in heterogeneous porous media.


Permeability Shaly sand Mudrocks 



This work was supported by the University of Texas at Austin.


  1. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146(1), 54–62 (1942). doi: 10.2118/942054-G CrossRefGoogle Scholar
  2. Asadollahi, M., Bagheri, A.M., Haghighi, M., Namani, M.: Investigation of cementation factor in Iranian carbonate reservoirs. In: Transactions of the 14th Formation Evaluation Symposium, Chiba, Japan (2008)Google Scholar
  3. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)Google Scholar
  4. Bernabé, Y., Bruderer, C.: Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J. Geophys. Res. 103(B1), 512–525 (1998). doi: 10.1029/97JB02486 Google Scholar
  5. Bernabé, Y., Revil, A.: Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophys. Res. Lett. 22(12), 1529–1532 (1995). doi: 10.1029/95GL01418 CrossRefGoogle Scholar
  6. Boek, E.S., Venturoli, M.: Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 59, 2305–2314 (2010). doi: 10.1016/j.camwa.2009.08.063 CrossRefGoogle Scholar
  7. Borai, A.M.: A new correlation for the cementation factor in low-porosity carbonates. SPE Form. Eval. 2(4), 495–499 (1987). doi: 10.2118/14401-pa CrossRefGoogle Scholar
  8. Börner, F.D., Schopper, J.R., Weller, A.: Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys. Prospect. 44(4), 583–601 (1996). doi: 10.1111/j.1365-2478.1996.tb0017.x CrossRefGoogle Scholar
  9. Boudreau, B.P., Meysman, F.J.R.: Predicted tortuosity of muds. Geology 34(8), 693–696 (2006). doi: 10.1130/G22771.1 CrossRefGoogle Scholar
  10. Brown, K.M., Saffer, D.M., Bekins, B.A.: Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth Planet. Sci. Lett 194(1–2), 97–109 (2001). doi: 10.1016/s0012-821x(01)00546-5 CrossRefGoogle Scholar
  11. Byrnes, A.T., Cluff, R.M., Webb, J.C.: Analysis of critical permeability, capillary pressure, and electrical properties for Mesaverde tight gas sandstones from western U.S. basins. Final Scientific/Technical Report, DOE Award No. DE-FC26-05NT42660. University of Kansas, Lawrence, KS (2009)Google Scholar
  12. Carrique, F., Arroyo, F.J., Delgado, A.V.: Effect of size polydispersity on the dielectric relaxation of colloidal suspensions: a numerical study in the frequency and time domains. J. Colloid Interface Sci. 206(2), 569–576 (1998). doi: 10.1006/jcis.1998.5747 CrossRefGoogle Scholar
  13. Clennell, M.B., Dewhurst, D.N., Brown, K.M., Westbrook, G.K.: Permeability anisotropy of consolidated clays. In: Aplin, A.C., et al. (eds.) Muds and Mudstones: Physical and Fluid Flow Properties. Geological Society of London Special Publication, vol. 158, pp. 79–96. Geological Society of London, London (1999)Google Scholar
  14. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30, 329–364 (1998). doi: 10.1146/annurev.fluid.30.1.329 CrossRefGoogle Scholar
  15. Dagan, G.: Models of groundwater flow in statistically homogeneous porous formations. Water Resour. Res. 15(1), 47–63 (1979)CrossRefGoogle Scholar
  16. Dewhurst, D.N., Aplin, A.C., Sarda, J.-P.: Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. J. Geophys. Res. 104(B12), 29261–29274 (1999). doi: 10.1029/1999JB900276 CrossRefGoogle Scholar
  17. Dewhurst, D.N., Aplin, A.C., Sarda, J.-P., Yang, Y.: Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study. J. Geophys. Res. 103(B1), 651–661 (1998). doi: 10.1029/97JB02540 CrossRefGoogle Scholar
  18. Dewhurst, D.N., Brown, K.M., Clennell, M.B., Westbrook, G.K.: A comparison of the fabric and permeability anisotropy of consolidated and sheared silty clay. Eng. Geol. 42(4), 253–267 (1996). doi: 10.1016/0013-7952(95)00089-5 CrossRefGoogle Scholar
  19. Doyen, P.M.: Permeability, conductivity, and pore geometry of sandstone. J. Geophys Res. 93(B7), 7729–7740 (1988). doi: 10.1029/jb093ib07p07729 CrossRefGoogle Scholar
  20. Frank, V.: On the penetration of a static homogeneous field in an anisotropic medium into an ellipsoidal inclusion consisting of another anisotropic medium. In: Jordan, E.C. (ed.) Electromagnetic Theory and Antennas, pp. 615–623. Pergamon Press, Oxford (1963)Google Scholar
  21. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Skinner, T.E.: Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophys. Res. Lett. 41(11), 3884–3890 (2014). doi: 10.1002/2014GL060180 CrossRefGoogle Scholar
  22. Guevara, E.H., Grigsby, J.D.: Deltaic deposits of the Wilcox Group in the Houston embayment: example from Lake Creek field. In: Levey, R.A., Grigsby, J.D. (eds.) Core and Log Analysis of Depositional Systems and Reservoir Properties of Gulf Coast Natural Gas Reservoirs: An Integrated Approach to Infield Reserve Growth in Frio, Vicksburg, and Wilcox Sandstones, Geological Circular 92-1, pp. 45–52. Bureau of Economic Geology, University of Texas at Austin, Austin (1992)Google Scholar
  23. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Martins Nijhoff, The Hague (1983)Google Scholar
  24. Hashin, Z., Shtrikman, S.: A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962). doi: 10.1063/1.1728579 CrossRefGoogle Scholar
  25. Hausenblas, M.: Stress dependence of the cementation exponent. In: Transactions of the 1995 Symposium SCA, paper 9518 (1995)Google Scholar
  26. Holland, D.S., Leedy, J.B., Lammlein, D.R.: Eugene Island Block 330 field—USA offshore Louisiana. In: Beaumont, E.A., Foster, N.H. (eds.) AAPG Treatise of Petroleum Geology, Atlas of Oil and Gas Fields, Structural traps III, pp. 103–143. American Association of Petroleum Geologists, Tulsa (1990)Google Scholar
  27. Hördt, A., Blaschek, R., Kemna, A., Zisser, N.: Hydraulic conductivity estimation from induced polarisation data at the field scale—the Krauthausen case history. J. Appl. Geophys. 62(1), 33–46 (2007). doi: 10.1016/j.jappgeo.2006.08.001 CrossRefGoogle Scholar
  28. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906). doi: 10.1007/BF02418571 CrossRefGoogle Scholar
  29. Johnson, D.L., Koplik, J., Schwartz, L.M.: New pore-size parameter characterizing transport in porous media. Phys. Rev. Lett. 57(20), 2564–2567 (1986). doi: 10.1103/PhysRevLett.57.2564 CrossRefGoogle Scholar
  30. Kamann, P.J., Ritzi, R.W., Dominic, D.F., Conrad, C.M.: Porosity and permeability in sediment mixtures. Ground Water 45(4), 429–438 (1986). doi: 10.1111/j.1745-6584.2007.00313.x CrossRefGoogle Scholar
  31. Kenney, T.C.: Sea-level movements and the geologic histories of the post-glacial marine soils at Boston, Nicolet, Ottawa and Oslo. Geotechnique 14, 203–230 (1964). doi: 10.1680/geot.1964.14.3.203 CrossRefGoogle Scholar
  32. Knoll, M.D., Knight, R., Brown, E.: Can accurate estimates of permeability be obtained from measurements of dielectric properties? Proc. Symp. Appl. Geophys. Eng. Environ. Probl. 8, 25–35 (1995). doi: 10.4133/1.2922144 CrossRefGoogle Scholar
  33. Koch, K., Revil, A., Holliger, K.: Relating the permeability of quartz sands to their grain size and spectral induced polarization characteristics. Geophys. J. Int. 190(1), 230–242 (2012). doi: 10.1111/j.1365-246X.2012.05510.x CrossRefGoogle Scholar
  34. Koltermann, C.E., Gorelick, S.M.: Fractional packing model for hydraulic conductivity derived from sediment mixtures. Water Resour. Res. 31(12), 3283–3297 (1995). doi: 10.1029/95WR02020 CrossRefGoogle Scholar
  35. Kostek, S., Schwartz, L.M., Johnson, D.L.: Fluid permeability in porous media: comparison of electrical estimates with hydrodynamical calculations. Phys. Rev. B 45(1), 186–195 (1992). doi: 10.1103/PhysRevB.45.186 CrossRefGoogle Scholar
  36. Latt, J: Palabos, Parallel Lattice Boltzmann Solver. (2009). Accessed 30 Jul 2014
  37. Marion, D., Nur, A., Yin, H., Han, D.: Compressional velocity and porosity in sand–clay mixtures. Geophysics 57(4), 554–563 (1992). doi: 10.1190/1.1443269 CrossRefGoogle Scholar
  38. Mavko, G., Mukerji, T., Dvorkin, J.: The Rock Physics Handbook, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  39. Mendelson, K.S., Cohen, M.H.: The effect of grain anisotropy on the electrical properties of sedimentary rocks. Geophysics 47(2), 257–263 (1982). doi: 10.1190/1.1441332 CrossRefGoogle Scholar
  40. O’Brien, N.R.: Fabric of kaolinite and illite floccules. Clays Clay Miner. 19(6), 353–359 (1971). doi: 10.1346/CCMN.1971.0190603 CrossRefGoogle Scholar
  41. Pan, C., Luo, L., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput Fluids 35, 898–909 (2006). doi: 10.1016/j.compfluid.2005.03.008 CrossRefGoogle Scholar
  42. Reece, J.S., Flemings, P.B., Germain, J.T.: Data report: permeability, compressibility, and microstructure of resedimented mudstone from IODP Expedition 322, Site C0011. Proc. Integr. Ocean Drill. Progr. 322, 26 (2013). doi: 10.2204/iodp.proc.322.205.2013 Google Scholar
  43. Revil, A.: Spectral induced polarization of shaly sands: influence of the electrical double layer. Water Resour. Res. 48(2), W02517 (2012). doi: 10.1029/2011WR011260 CrossRefGoogle Scholar
  44. Revil, A., Cathles, L.M.: Permeability of shaly sands. Water Resour. Res. 35(3), 651–662 (1999). doi: 10.1029/98WR02700 CrossRefGoogle Scholar
  45. Revil, A., Florsch, N.: Determination of permeability from spectral induced polarization in granular media. Geophys. J. Int. 181(3), 1480–1498 (2010). doi: 10.1111/j.1365-246X.2010.04573.x Google Scholar
  46. Revil, A., Grauls, D., Brévart, O.: Mechanical compaction of sand/clay mixtures. J. Geophys. Res. 107(B11), 2293 (2002). doi: 10.1029/2001JB000318 CrossRefGoogle Scholar
  47. Sahimi, S.: Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media. Transp. Porous Media 13(1), 3–40 (1993). doi: 10.1007/bf00613269 CrossRefGoogle Scholar
  48. Santamarina, J.C., Klein, K.A., Wang, Y.H., Prencke, E.: Specific surface: determination and relevance. Can. Geotech. J. 39(1), 233–241 (2002). doi: 10.1139/T01-077 CrossRefGoogle Scholar
  49. Scheidegger, A.E.: The Physics of Flow Through Porous Media, 2nd edn. Oxford University Press, London (1963)Google Scholar
  50. Schneider, J., Flemings, P.B., Day-Stirrat, R.J., Germaine, J.T.: Insights into pore-scale controls on mudstone permeability through resedimentation experiments. Geology 39(11), 1011–1014 (2011). doi: 10.1130/G32475.1 CrossRefGoogle Scholar
  51. Sen, P.N., Scala, C., Cohen, M.H.: A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46(5), 781–795 (1981). doi: 10.1190/1.1441215 CrossRefGoogle Scholar
  52. Thomas, E.C., Stieber, S.J.: The distribution of shale in sandstones and its effect upon porosity. In: Transactions of the 16th Annual Logging Symposium SPWLA, Paper T (1975)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Petroleum and Geosystems EngineeringUniversity of Texas at AustinAustinUSA
  2. 2.Department of Geology and GeophysicsTexas A&M UniversityTXUSA

Personalised recommendations