Advertisement

Transport in Porous Media

, Volume 106, Issue 1, pp 201–220 | Cite as

Fluid Flow and Heat Transfer with Phase Change and Local Thermal Non-equilibrium in Vertical Porous Channels

  • F. LindnerEmail author
  • Ch. Mundt
  • M. Pfitzner
Article

Abstract

This article investigates the multiphase flow in a porous channel, heated at one section of the wall. For non-isothermal flow with phase-change, a finite-volume solver in MATLAB® is used with a two-phase mixture model with local thermal non-equilibrium , i.e., allowing for different solid- and fluid temperatures locally. The effect of gravity is examined for aiding and opposing flow. The effects of Stanton number of evaporation, Rayleigh number, Péclet number and Biot number on fluid flow and heat transfer for steady case are discussed. For these characteristic numbers and aiding flow, the largest influence on the local shift of the biphasic zone is with Stanton number, Péclet number and Biot number. The minimal saturation in the domain is correlated with increasing Stanton number, Péclet number or Biot number. The Rayleigh number, however, has an opposite effect on minimal saturation. The displacement effect of generated vapor is discussed for high Stanton numbers, Péclet numbers and Biot numbers. Also, we show that for sufficiently high heat input, opposing flow yields large differences in position of the biphasic zone and minimal saturation. Applicability of local thermal equilibrium for cases with phase change is shown to introduce a large error, not only for small Biot numbers or large Reynolds numbers.

Keywords

Porous medium Multiphase flow Mixture model  Local thermal non-equilibrium Heat exchanger 

List of Latin Symbols

\(Bi\)

Biot number \((-)\)

\(c\)

Isobaric specific heat capacity (J/kg K)

\(D\)

Capillary diffusion coefficient (m\(^{2}\)/s)

\(f\)

Hindrance function \((-)\)

\(\mathbf g \)

Gravity vector (m/s\(^{2}\))

\(h\)

Specific enthalpy (J/kg)

\(H\)

Enthalpy (J/m\(^{3}\))

\(J\)

Leverett J-Function \((-)\)

\(\mathbf j \)

Diffusive mass flux (kg/s m\(^{2}\))

\(k\)

Heat conductivity (W/m K)

\(\mathbf K \)

Permeability tensor (m\(^{2}\))

\(k_r\)

Relative permeability \((-)\)

\(L\)

Length of channel (m)

\(l_1,l_2\)

Lengths of unheated wall (m)

\(\fancyscript{L}\)

Characteristic length (m)

\(n\)

Coordinate normal to wall (m)

\(Nu\)

Nusselt number \((-)\)

\(p\)

Pressure (Pa)

\(Pe\)

Péclet number \((-)\)

\(Pr\)

Prandtl number \((-)\)

\(\dot{q}\)

Heat flux for boundary condition (W/m\(^{2}\))

\(\dot{q}_{sf}\)

Heat flux from solid to fluid (W/m\(^{3}\))

\(Re\)

Reynolds number \((-)\)

\(s\)

Liquid saturation \((-)\)

\(St_v\)

Porous Stanton number of evaporation \((-)\)

\(T\)

Temperature (K)

\(\mathbf u \)

Velocity vector (m/s)

\(u\)

Velocity in x (m/s)

\(v\)

Velocity in y (m/s)

\(W\)

Width of channel (m)

\(x, y\)

Coordinates (m)

Greek Symbols

\(\alpha _{sf}\)

Specific surface of pores (1/m)

\(\alpha \)

Diffusion coefficient (m\(^{2}\)/s)

\(\beta \)

Volumetric thermal expansion coefficient (1/K)

\(\varepsilon \)

Porosity \((-)\)

\(\gamma _h\)

Advection correction coefficient \((-)\)

\(\varGamma _h\)

Effective diffusion coefficient (m\(^{2}\)/s)

\(\lambda \)

Relative mobility \((-)\)

\(\mu \)

Dynamic viscosity (Pa s)

\(\nu \)

Kinematic viscosity (m\(^{2}\)/s)

\(\rho \)

Density (kg/m\(^{3}\))

\(\sigma \)

Surface tension (N/m)

Subscripts

\(f\)

Fluid

\(i\)

Phase \(i\)

\(k\)

Kinetic

\(l\)

Liquid

\(s\)

Solid

\(v\)

Vapor

boil

boiling

dryout

At dryout state

eff

Effective

entry

Entry

in

Input

out

Output

ref

Reference

sat

At saturation state

References

  1. Bau, H.H., Torrance, K.: Boiling in low-permeability porous materials. Int. J. Heat. Mass. Transf. 25(1), 45–55 (1982)CrossRefGoogle Scholar
  2. Clark, J., Rohsenow, W.: Local boiling heat transfer to water at low reynolds numbers and high pressures. Trans. ASME 76, 554–562 (1954)Google Scholar
  3. Dehghan, M., Valipour, M., Saedodin, S.: Perturbation analysis of the local thermal non-equilibrium condition in a fluid-saturated porous medium bounded by an iso-thermal channel. Transp. Porous Media 102(2), 139–152 (2014). doi: 10.1007/s11242-013-0267-2 CrossRefGoogle Scholar
  4. Easterday, O., Wang, C., Cheng, P.: A numerical and experimental study of two-phase flow and heat transfer in a porous formation with localized heating from below. In: Proceedings of ASME Heat Transfer and Fluid Engineering Divisions (1995)Google Scholar
  5. He, F., Wang, J., Xu, L., Wang, X.: Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng. 58, 173–180 (2013)CrossRefGoogle Scholar
  6. Kaviany, : Principles of Heat Transfer in Porous Media, 2nd edn. Springer, Berlin (1999)Google Scholar
  7. Li, H., Leong, K., Jin, L., Chai, J.: Three-dimensional numerical simulation of fluid flow with phase change heat transfer in an asymmetrically heated porous channel. Int. J. Therm. Sci. 49(12), 2363–2375 (2010a)CrossRefGoogle Scholar
  8. Li, H., Leong, K., Jin, L., Chai, J.: Transient behavior of fluid flow and heat transfer with phase change in vertical porous channels. Int. J. Heat. Mass. Transf. 53(23–24), 5209–5222 (2010b)CrossRefGoogle Scholar
  9. Li, H., Leong, K., Jin, L., Chai, J.: Transient two-phase flow and heat transfer with localized heating in porous media. Int. J. Therm. Sci. 49(7), 1115–1127 (2010c)CrossRefGoogle Scholar
  10. Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012)CrossRefGoogle Scholar
  11. Lindner, F., Nuske, P., Helmig, R., Mundt, C., Pfitzner, M.: Transpiration cooling with local thermal non-equilibrium: Model comparison in multiphase flow in porous media. (to be published) (2014).Google Scholar
  12. MATLAB: Matlab release 2013a. The MathWorks Inc, Natick (2013)Google Scholar
  13. Mondal, P.: Thermodynamically consistent limiting forced convection heat transfer in a asymmetrically heated porous channel: An analytical study. Transp. Porous Media 100, 17–37 (2013)CrossRefGoogle Scholar
  14. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences. Taylor & Francis, New York (1980)Google Scholar
  15. Rohsenow, W.: A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME 74, 969–976 (1952)Google Scholar
  16. Shi, J., Wang, J.: A numerical investigation of transpiration cooling with liquid coolant phase change. Transp. Porous Media 87, 703–716 (2011)CrossRefGoogle Scholar
  17. Wakao, N., Kaguei, S., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of nusselt numbers. Chem. Eng. Sci. 34, 325–336 (1979)CrossRefGoogle Scholar
  18. Wang, C.Y., et al.: Multiphase flow and heat transfer in porous media. In: Hartnett Jr, J.P. (ed.) Advances in Heat Transfer, vol. 30, pp. 93–196. Academic Press, New York (1997)Google Scholar
  19. Wang, C.: Multi-dimensional modeling of steam injection into porous media. In: Proceedings 2nd European Thermal Sciences and 14th UIT National Heat Transfer Conference, Rome (1996)Google Scholar
  20. Wang, C.: A fixed-grid numerical algorithm for two-phase flow and heat transfer in porous media. Numer. Heat Transf. Part B 32(1), 85–105 (1997)CrossRefGoogle Scholar
  21. Wang, C., Cheng, P.: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media. part i: model development. Int. J. Heat. Mass. Transf. 39(17), 3607–3618 (1996)CrossRefGoogle Scholar
  22. Wang, C., Beckermann, C., Fan, C.: Numerical study of boiling and natural convection in capillary porous media using the two-phase mixture model. Numer. Heat Transf. 26, 375–398 (1994)CrossRefGoogle Scholar
  23. Wang, C.Y., Beckermann, C.: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media—i. formulation. Int. J. Heat. Mass. Transf. 36(11), 2747–2758 (1993)CrossRefGoogle Scholar
  24. Wang, J., Shi, J.: Discussion of boundary conditions of transpiration cooling problems using analytical solution of ltne model. ASME J. Heat Transf. 130(1), 014504 (2008)CrossRefGoogle Scholar
  25. Wang, J., Wang, H.: A discussion of transpiration cooling problems through an analytical solution of local thermal nonequilibrium model. J. Heat Transf. 128, 1093–1098 (2006)CrossRefGoogle Scholar
  26. Wei, K., Wang, J., Mao, M.: Model discussion of transpiration cooling with boiling. Transp. Porous Media 94, 303–318 (2012)CrossRefGoogle Scholar
  27. Xue, G.: Numerical methods for multiphysics, multiphase, and multicomponent models for fuel cells. PhD thesis, The Pennsylvania State University (2008)Google Scholar
  28. Yuki, K., Abei, J., Hashizume, H., Toda, S.: Numerical investigation of thermofluid flow characteristics with phase change against high heat flux in porous media. J. Heat Transf. 130(1), 012602 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Aerospace Engineering, Institute for ThermodynamicsUniversity of the Federal Armed Forces MunichNeubibergGermany

Personalised recommendations