Transport in Porous Media

, Volume 105, Issue 2, pp 255–276 | Cite as

Predicting Vertical Flow Barriers Using Tracer Diffusion in Partially Saturated, Layered Porous Media

  • Jason GoEmail author
  • Imma Bortone
  • Ann Muggeridge
  • Craig Smalley


Sudden changes in isotopic tracer concentration in pore waters have been interpreted as indicating barriers to vertical advective flow through porous rocks in the subsurface, e.g. step changes in \(^{87}\hbox {Sr}/^{86}\)Sr ratio are often used in the oil and gas industry as a signature of reservoir compartmentalisation. This study shows that this is not necessarily the case. It can take millions of years for such step changes to equilibrate by diffusion if there is no flow resulting from pressure or density gradients even in high permeability, high porosity rocks, particularly if the water saturation is low. Changes in tracer concentration gradients can be good indicators of changes in porosity (or water saturation) between layers. In contrast changes in sorption without a change in porosity are almost impossible to identify. The time taken for concentration gradients to equilibrate is affected by the layer properties but can be quickly estimated from the harmonic average of the effective diffusion coefficient for each layer and a simple analytical expression for a homogeneous system. This was achieved by performing a sensitivity analysis on different layer properties (porosity contrast, saturation contrast, sorption contrast, thickness ratio) using existing analytical solutions for diffusion in layered systems.


Tracer diffusion Mixing times-scales Water saturation Heterogeneity Analytical solution 



The authors wish to thank Dr Peter Cleall and the anonymous reviewers for their helpful inputs on this work. We also thank BP for supporting the development of these mixing models and for permission to publish this work


  1. Akiba, D., Hashimoto, H.: Distribution coefficient of strontium on variety of minerals and rocks. J. Nucl. Sci. Technol. 27, 275–279 (1990)CrossRefGoogle Scholar
  2. Altmann, S.: ‘Geo’chemical research: a key building block for nuclear waste disposal safety cases. J. Contam. Hydrol. 102, 174–179 (2008)CrossRefGoogle Scholar
  3. Anderson, W.G.: Wettability literature survey - part 3: the effects of wettability on the electrical properties of porous media. J. Pet. Tech. 38, 1371–1378 (1986)CrossRefGoogle Scholar
  4. Archie, G.E.: The electrical resistivity logs as an aid in determining some reservoir characteristics. Pet. Trans. AIME. 146, 54–62 (1942)CrossRefGoogle Scholar
  5. Barnaby, R.J., Oetting, G.C., Gao, G.: Strontium isotopic signatures of oil-field waters: applications for reservoir characterization. AAPG Bull. 88, 1677–1704 (2004)CrossRefGoogle Scholar
  6. Bourg, I.C., Bourg, A.C.M., Sposito, G.: Modeling diffusion and adsorption in compacted bentonite: a critical review. J. Contam. Hydrol. 61, 293–302 (2003)CrossRefGoogle Scholar
  7. Boving, T.B., Grathwohl, P.: Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J. Contam. Hydrol. 53, 85–100 (2001)CrossRefGoogle Scholar
  8. Capo, R.C., Stewart, B.W., Chadwick, O.A.: Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197–225 (1998)CrossRefGoogle Scholar
  9. Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. Oxford Science Publications, Oxford, England (1959)Google Scholar
  10. Conca, J.L., Wright, J.: Diffusion and flow in gravel soil and whole rock. Hydrogeol. J. 1, 5–24 (1992)CrossRefGoogle Scholar
  11. Conrad, M.E., DePaolo, D.J., Maher, K., Gee, G.W., Ward, A.L.: Field evidence for strong chemical separation of contaminants in the Hanford vadose zone. Vadose Zone J. 6, 1031–1041 (2007)CrossRefGoogle Scholar
  12. Donaldson, E.C., Siddiqui, T.K.: Relationship between the Archie saturation exponent and wettability. SPE Form. Eval. 4, 359–362 (1989)CrossRefGoogle Scholar
  13. England, W.A., Mackenzie, A.S., Mann, D.M., Quigley, T.M.: The movement and entrapment of petroleum fluids in the subsurface. J. Geol. Soc. Lond. 144, 327–347 (1987)CrossRefGoogle Scholar
  14. Focke, J.W., Munn, D.: Cementation exponents in middle eastern carbonate reservoirs. SPE Form. Eval. 2, 155–167 (1987)CrossRefGoogle Scholar
  15. Frost, C.D., Toner, R.N.: Strontium isotopic identification of water-rock interaction and groundwater mixing. Ground Water. 42, 418–432 (2004)CrossRefGoogle Scholar
  16. Go, J., Smalley, P.C., Muggeridge, A.: Appraisal of compartmentalization using fluid mixing time-scales: horn mountain field. Gulf Mex. Pet. GeoSci. 18, 305–314 (2012)CrossRefGoogle Scholar
  17. Go, J., Stegemann, J.A.: Modelling post-depositional transport of PAHs in bed-sediments using CoReTranS. J. Soils Sediments 12, 1541–1548 (2012)CrossRefGoogle Scholar
  18. Go, J., Lampert, D.J., Stegemann, J.A., Reible, D.D.: Predicting contaminant fate and transport in sediment caps: mathematical modelling approaches. Appl. Geochem. 24, 1347–1353 (2009)CrossRefGoogle Scholar
  19. Hamamoto, S., Moldrup, P., Kawamoto, K., Komatsu, T.: Excluded-volume expansion of Archie’s law for gas and solute diffusivities and electrical and thermal conductivities in variably saturated porous media. Water Resour. Res. 46, W06514 (2010)Google Scholar
  20. Han, M., Youssef, S., Rosenberg, E., Fleury, M., Levitz, P.: Deviation from Archie’s law in partially saturated porous media: wetting film versus disconnectedness of the conducting phase. Phys. Rev. E. 79, 031127 (2009)CrossRefGoogle Scholar
  21. Holtta, P., Siitari-Kauppi, M., Hakanen, M., Tukiainen, V.: Attempt to model laboratory-scale diffusion and retardation data. J. Contam. Hydrol. 47, 139–148 (2001)CrossRefGoogle Scholar
  22. Hu, Q., Wang, J.S.Y.: Aqueous-phase diffusion in unsaturated geologic media: a review. Crit. Rev. Env. Sci. Tec. 33, 275–297 (2003)CrossRefGoogle Scholar
  23. Hu, Q.H., Kneafsey, T.J., Roberts, J.J., Tomutsa, L., Wang, J.S.Y.: Characterizing unsaturated diffusion in porous tuff gravel. Vadose Zone J. 3, 1425–1438 (2004)CrossRefGoogle Scholar
  24. Jackson, R.E., Inch, K.J.: The in-situ adsorption of \(^{90}\)Sr in a sand aquifer at the Chalk River Nuclear Laboratories. J. Contam. Hydrol. 4, 27–50 (1989)CrossRefGoogle Scholar
  25. Johnson, T.M., DePaolo, D.J.: Interpretation of isotopic data in groundwater-rock systems: model development and application to Sr isotope data from Yucca mountain. Water Resour. Res. 30, 1571–1587 (1994)CrossRefGoogle Scholar
  26. Johnson, T.M., DePaolo, D.J.: Rapid exchange effects on isotope ratios in groundwater systems 1. Development of a transport-dissolution-exchange model. Water Resour. Res. 33, 187–195 (1997)CrossRefGoogle Scholar
  27. Kovscek, A.R., Wong, H., Radke, C.J.: A pore-level scenario for the development of mixed wettability in oil reservoirs. AIChE J. 39, 1072–1085 (1993)CrossRefGoogle Scholar
  28. Kumar, M., Sok, R., Knackstedt, M.A., Latham, S., Senden, T.J., Sheppard, A.P., Varslot, T., Arns, C.: Mapping 3D pore scale fluid distributions: how rock resistivity is influenced by wettability and saturation history. Petrophysics 51, 102–117 (2010)Google Scholar
  29. Langman, J.B., Ellis, A.S.: A Multi-isotope (delta D, delta(18)O, (87)Sr/(86)Sr and delta(11)B) approach for identifying saltwater intrusion and resolving groundwater evolution along the Western Caprock Escarpment of the Southern High Plains. N. M. Appl. Geochem. 25, 159–174 (2010)CrossRefGoogle Scholar
  30. Lewis, T.W., Pivonka, P., Smith, D.W.: Theoretical investigation of the effects of consolidation on contaminant transport through clay barriers. Int. J. Numer. Anal. Meth. Geomech. 33, 95–116 (2009)CrossRefGoogle Scholar
  31. Li, Y., Cleall, P.J.: Analytical solutions for contaminant diffusion in double-layered porous media. J. Geotech. Geoenviron. Eng. 136, 1542–1554 (2010)CrossRefGoogle Scholar
  32. Liu, C., Ball, W.P.: Analytical modelling of diffusion-limited contamination and decontamination in a two-layer porous medium. Adv. Water Resour. 21, 297–313 (1998)CrossRefGoogle Scholar
  33. Liu, G., Si, B.C.: Analytical modelling of one-dimensional diffusion in layered systems with position-dependent diffusion coefficients. Adv. Water Resour. 31, 251–268 (2008)CrossRefGoogle Scholar
  34. Liu, G., Barbour, L., Si, B.C.: Unified multilayer diffusion model and application to diffusion experiment in porous media by method of chambers. Environ. Sci. Technol. 43, 2412–2416 (2009)CrossRefGoogle Scholar
  35. Malina, G.: Ecotoxicological and environmental problems associated with the former chemical plant in Tarnowskie Gory. Pol. Toxicol. 205, 157–172 (2004)CrossRefGoogle Scholar
  36. Mearns, E.W., McBride, J.J.: Hydrocarbon filling history and reservoir continuity of oil fields evaluated using \(^{87}\text{ Sr }/^{86}\)Sr isotope ratio variations in formation water, with examples from the North Sea. Pet. GeoSci. 5, 17–27 (1999)CrossRefGoogle Scholar
  37. Musgrove, M., Banner, J.L.: Regional groundwater mixing and the origin of saline fluids - midcontinent. U. S. Sci. 259, 1877–1882 (1993)Google Scholar
  38. Muurinen, A., Karnland, O., Lehikoinen, J.: Ion concentration caused by an external solution into the porewater of compacted bentonite. Phys. Chem. Earth. Part A/B/C. 29, 119–127 (2004)CrossRefGoogle Scholar
  39. Neretnieks, I.: Diffusion in the rock matrix: an important factor in radionuclide retardation. J Geophys. Res. 85, 4379–4397 (1980)CrossRefGoogle Scholar
  40. Patterson, R.J., Spoel, T.: Laboratory measurements of the strontium distribution coefficient for sediments from a shallow sand aquifer. Water Resour. Res. 17, 513–520 (1981)CrossRefGoogle Scholar
  41. Peng, S., Hu, Q., Hamamoto, S.: Diffusivity of rocks: gas diffusion measurements and correlation to porosity and pore size distribution. Water Resour. Res. 48, W02507 (2012)Google Scholar
  42. Perkins, T.K., Johnston, O.C.: A review of diffusion and dispersion in porous media. Soc. Pet. Eng. J. 3, 70–84 (1963)CrossRefGoogle Scholar
  43. Rahimpour-Bonab, H.: A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity. J. Pet. Sci. Eng. 58, 1–12 (2007)CrossRefGoogle Scholar
  44. Ransom, R.C.: The bulk volume water concept of resistivity well log interpretation. A theory based on a new reservoir rock resistivity model. Log Anal. XV(1), 3–31 (1974)Google Scholar
  45. Rowe, R. K.: Pollutant transport through barriers. Proceedings of Geotechnical Practice for Waste Disposal ‘87/GT Div. ASCE/Ann Arbor, MI, June 15–17 (1987).Google Scholar
  46. Schiesser, W.E.: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego (1991)Google Scholar
  47. Schubert, M., Balcazar, M., Lopez, A., Pena, P., Flores, J.H., Knoller, K.: Combination of radon and stable isotope analysis as a tool for decision support concerning the remediation of NAPL-contaminated sites. Isot. Environ. Health Stud. 43, 215–226 (2007)CrossRefGoogle Scholar
  48. Schubert, M., Osenbruek, K., Knoeller, K.: Using stable and radioactive isotopes for the investigation of contaminant metal mobilization in a metal mining district. Appl. Geochem. 23, 2945–2954 (2008)CrossRefGoogle Scholar
  49. Shackelford, C.D.: Laboratory diffusion testing for waste disposal - a review. J. Contam. Hydrol. 7, 177–217 (1991)CrossRefGoogle Scholar
  50. Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil. I: background. J. Geotech. Eng. 117, 467–484 (1991)CrossRefGoogle Scholar
  51. Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007)CrossRefGoogle Scholar
  52. Smalley, P.C., Hale, N.A.: Early identification of reservoir compartmentalization by combining a range of conventional and novel data types. SPE Form. Eval. 11, 163–169 (1996)Google Scholar
  53. Smalley, P.C., Dodd, T.A., Stockden, I.L., Raheim, A., Mearns, E.W.: Compositional heterogeneities in oil field formation waters: Identifying them, using them. In the geochemistry of reservoirs: Geological Society (London) Special. Publication 86, 59–69 (1995)Google Scholar
  54. Smalley, P.C., England, W.A.: Reservoir compartmentalization assessed with fluid compositional data. Soc. Pet. Eng. Reserv. Eng. 9, 175–180 (1994)Google Scholar
  55. Smalley, P.C., Raheim, A., Dickson, J.A.D., Emery, D.: \(^{87}\text{ Sr }/^{86}\)Sr in waters from the Lincolnshire Limestone aquifer, England, and the potential of natural strontium isotopes as a tracer for a secondary recovery seawater injection process in oilfields. Appl. Geochem. 3, 591–600 (1988)CrossRefGoogle Scholar
  56. Van Loon, L., Glaus, M., Muller, W.: Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion. Appl. Geochem. 22, 2536–2552 (2007)CrossRefGoogle Scholar
  57. Widory, D., Kloppmann, W., Chery, L., Bonnin, J., Rochdi, H., Guinamant, J.L.: Nitrate in groundwater: an isotopic multi-tracer approach. J. Contam. Hydrol. 72, 165–188 (2004)CrossRefGoogle Scholar
  58. Worden, R.H., Oxtoby, N.H., Smalley, P.C.: Can oil emplacement prevent quartz cementation in sandstones? Pet. Geosci. 4, 129–137 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jason Go
    • 1
    Email author
  • Imma Bortone
    • 1
  • Ann Muggeridge
    • 1
  • Craig Smalley
    • 2
  1. 1.Department of Earth Science and EngineeringImperial CollegeLondon UK
  2. 2.BP Exploration and ProductionSunbury-on-ThamesUK

Personalised recommendations