Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Electrokinetic Mixing and Displacement of Charged Droplets in Hydrogels


Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential \(\zeta \). The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the electroosmotic flow arising from the droplet and polymer charge. The fluid velocity inside the droplet is linearly proportional to the electroosmotic flow velocity in the charged gel and the electroosmotic flow velocity beyond the electrical double layer of a charged interface. It is found that the polymer boundary condition at the droplet surface and the viscosities of the fluids inside and outside the droplet significantly modulate the interior fluid flow. The ionic strength and the permeability of the polymer network impact the flow differently depending on whether the flow arises from the droplet or polymer charge. Finally, the displacement of a charged droplet embedded in a gel under the influence of an external electric field is undertaken. This work is motivated by experimental attempts, which can register sub-nanometer-scale inclusion displacements in hydrogels, to advance electrical microrheology as a diagnostic tool for probing inclusion-hydrogel interfaces. In the absence of polymer charge, a close connection is found between the electrical response of a charged droplet when it is immobilized in an uncharged incompressible gel and when it is dispersed in a Newtonian electrolyte.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

  2. Ahn, K., Kerbage, C., Hunt, T.P., Westervelt, R.M., Link, D.R., Weitz, D.A.: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88(2), 3 (2006)

  3. Baroud, C.N., Gallaire, F., Dangla, R.: Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010)

  4. Barz, D.P.J., Steen, P.H.: A dynamic model of the electroosmotic droplet switch. Phys. Fluids 25(9), 097104 (2013)

  5. Bassetti, M.J., Chatterjee, A.N., Aluru, N.R.: Development and modeling of electrically triggered hydrogels for microfluidic applications. J. Microelectromech. Syst. 14(5), 1198–1207 (2005)

  6. Beaman, D.K., Robertson, E.J., Richmond, G.L.: Ordered polyelectrolyte assembly at the oil-water interface. Proc. Natl. Acad. Sci. 109(9), 3226–3231 (2012)

  7. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

  8. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-H.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(2), 588–590 (2000)

  9. Berli, C.L.A.: The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics. Electrophoresis 34(5), 622–630 (2013)

  10. Bhosale, P.S., Chun, J., Berg, J.C.: Electroacoustics of particles dispersed in polymer gel. Langmuir 27(12), 7376–7379 (2011)

  11. Chabert, M., Dorfman, K.D., Viovy, J.-L.: Droplet fusion by alternating current (ac) field electrocoalescence in microchannels. Electrophoresis 26(19), 3706–3715 (2005)

  12. Chang, C.-C., Yang, R.-J.: Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3(5), 501–525 (2007)

  13. Cox, R.G.: The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37, 601–623 (1969)

  14. DeLacey, E.H.B., White, L.R.: Dielectric response and conductivity of dilute suspensions of colloidal particles. J. Chem. Soc. Faraday Trans. 77(11), 2007–2039 (1981)

  15. Desmarais, S.M., Haagsman, H.P., Barron, A.E.: Microfabricated devices for biomolecule encapsulation. Electrophoresis 33(17), 2639–2649 (2012)

  16. Dhopeshwarkar, R., Sun, L., Crooks, R.M.: Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip 5, 1148–1154 (2005)

  17. Dierking, I., Biddulph, G., Matthews, K.: Electromigration of microspheres in nematic liquid crystals. Phys. Rev. E 73(1), 011702 (2006)

  18. Dommersnes, P., Rozynek, Z., Mikkelsen, A., Castberg, R., Kjerstad, K., Hersvik, K., Otto Fossum, J.: Active structuring of colloidal armour on liquid drops. Nat. Commun. 4, 2066 (2013)

  19. Eddington, D.T., Beebe, D.J.: Flow control with hydrogels. Adv. Drug Deliv. Rev. 56(2), 199–210 (2004)

  20. English, A.E., Tanaka, T., Edelman, E.R.: Polyelectrolyte hydrogel instabilities in ionic solutions. J. Chem. Phys. 105(23), 1066 (1996)

  21. Feng, Z., Michaelides, E.E., Mao, S.: On the drag force of a viscous sphere with interfacial slip at small but finite reynolds numbers. Fluid Dyn. Res. 44(2), 025502 (2012)

  22. Fidalgo, L.M., Whyte, G., Bratton, D., Kaminski, C.F., Abell, C., Huck, W.T.S.: From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angew. Chem. Int. Ed. 47(11), 2042–2045 (2008)

  23. Fiumefreddo, A., Utz, M.: Bulk streaming potential in poly(acrylic acid)/poly(acrylamide) hydrogels. Macromolecules 6(6), 2401–2420 (2010)

  24. Frenz, L., El Harrak, A., Pauly, M., Bgin-Colin, S., Griffiths, A.D., Baret, J.-C.: Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 47(36), 6817–6820 (2008)

  25. Fu, H.C., Shenoy, V.B., Powers, T.R.: Role of slip between a probe particle and a gel in microrheology. Phys. Rev. E 78(6), 061503 (2008)

  26. Fu, H.C., Shenoy, V.B., Powers, T.R.: Low-reynolds-number swimming in gels. Europhys. Lett. 91(2), 24002 (2010)

  27. Gary Leal, L.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press, New York (2007)

  28. Gu, W.Y., Lai, W.M., Mow, V.C.: Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J. Biomech. 26(6), 709–723 (1993)

  29. Gu, W.Y., Lai, W.M., Mow, V.C.: Transport of multi-electrolytes in charged hydrated biological soft tissues. Trans. Porous Media 34, 143–157 (1999)

  30. Guo, X., Ballauff, M.: Spherical polyelectrolyte brushes: comparison between annealed and quenched brushes. Phys. Rev. E 64(5), 051406 (2001)

  31. Hessel, V., Lwe, H., Schnfeld, F.: Micromixers: a review on passive and active mixing principles. Chem. Eng. Sci. 60(89), 2479–2501 (2005)

  32. Hu, Y., Zhang, X., Wang, W.: Boundary conditions at the liquid-liquid interface in the presence of surfactants. Langmuir 26(13), 10693–10702 (2010)

  33. Hua, J., Lim, L.K., Wang, C.-H.: Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys. Fluids 20(11), 113302 (2008)

  34. Hunter, R.J.: Foundations of Colloid Science, 2nd edn. Oxford University Press, Oxford (2001)

  35. Jing, L., Dan, G., Jianbin, L., Guoxin, X.: Numerical simulation of bubble dynamics in a micro-channel under a nonuniform electric field. Electrophoresis 32(3–4), 414–422 (2011)

  36. Komarova, G.A., Starodubtsev, S.G., Lozinsky, V.V., Nasimova, I.R., Khokhlov, A.R.: Intelligent gels and cryogels with embedded emulsions of various oils. J. Appl. Polym. Sci. 127(4), 2703–2709 (2013)

  37. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258 (1991)

  38. Leunissen, M.E., van Blaaderen, A., Hollingsworth, A.D., Sullivan, M.T., Chaikin, P.M.: Electrostatics at the oil-water interface, stability, and order in emulsions and colloids. Proc. Natl. Acad. Sci. 104(8), 2585–2590 (2007)

  39. Levan, M.D.: Motion of a droplet with a newtonian interface. J. Colloid and Interf. Sci. 83(1), 11–17 (1981)

  40. Li, H., Yuan, Z., Lam, H.P., Lee, K.Y., Chen, J., Hanes, J., Fu, J.: Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens. Bioelectron. 19(9), 1097–1107 (2004)

  41. Liao, G., Smalyukh, I.I., Kelly, J.R., Lavrentovich, O.D., Jákli, A.: Electrorotation of colloidal particles in liquid crystals. Phys. Rev. E 72(3), 031704 (2005)

  42. Lichtenberg, J., de Rooij, N.F., Verpoorte, E.: Sample pretreatment on microfabricated devices. Talanta 56(2), 233–266 (2002)

  43. Lin, K.L., Osseo-Asare, K.: Electrophoretic mobility of oil drops in the presence of solvent extraction reagents. Solvent Extr. Ion Exch. 2(3), 365–380 (1984)

  44. Lin, D.C., Langrana, N.A., Yurke, B.: Force-displacement relationships for spherical inclusions in finite elastic media. J. Appl. Phys. 97, 043510 (2005)

  45. Mangelsdorf, C.S., White, L.R.: Low-zeta-potential analytic solution for the electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J. Colloid and Interf. Sci. 160(2), 275–287 (1993)

  46. Matos, M.A., White, L.A., Tilton, R.D.: Electroosmotically enhanced mass transfer through polyacrylamide gels. J. Colloid Interf. Sci. 300, 429–436 (2006)

  47. Matos, M.A., White, L.R., Tilton, R.D.: Enhanced mixing in polyacrylamide gels containing embedded silica nanoparticles as internal electroosmotic pumps. Colloid. Surf. B 61(2), 262–269 (2008)

  48. Miller, R., Liggieri, L.: Interfacial Rheology (Progress in Colloid and Interface Science). Brill, Leiden (2009)

  49. Mizuno, D., Kimura, Y., Hayakawa, R.: Electrophoretic microrheology in a dilute lamellar phase of a nonionic surfactant. Phys. Rev. Lett. 87(8), 088104 (2001)

  50. Mohammadi, A.: Dynamics of colloidal inclusions in hydrogels, chapter 5, Ph.D. thesis, McGill university, pp. 120–179 (2011)

  51. Mohammadi, A., Hill, R.J.: Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels. J. Fluid Mech. 669, 298–327 (2011)

  52. Mohammadi, A.: Electric-field-induced response of a droplet embedded in a polyelectrolyte gel. Phys. Fluids 25(8), 082004 (2013)

  53. Nguyen, N.-T., Wu, Z.: Micromixers: a review. J. Micromech. Microeng. 15(2), R1 (2005)

  54. Nguyen, N.-T.: Micromixers : Fundamentals, Design and Fabrication. William Andrew Inc., Norwich (2008)

  55. Nield, D.A.: The beavers-joseph boundary condition and related matters: a historical and critical note. Trans. Porous Media 78(3), 537–540 (2009)

  56. Norris, A.N.: Impedance of a sphere oscillating in an elastic medium with and without slip. J. Acoust. Soc. Am. 119(4), 2062–2066 (2006)

  57. O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2(74), 1607–1626 (1978)

  58. O’Brien, R.W.: The electrical conductivity of a dilute suspension of charged particles. J. Colloid and Interf. Sci. 81(1), 234–248 (1981)

  59. Ohshima, H., Healy, T.W., White, L.R.: Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J. Chem. Soc. Faraday Trans. 80, 1643 (1984)

  60. Ohshima, H.: Theory of Colloid and Interfacial Electric Phenomena, vol. 12. Academic Press, New York (2006)

  61. Qiao, R., He, P.: Modulation of electroosmotic flow by neutral polymers. Langmuir 23(10), 5810–5816 (2007)

  62. Raphael, E.: Annealed and quenched polyelectrolytes. Europhys. Lett. 13(7), 623–628 (1990)

  63. Russel, W.B., Schowalter, W.R., Saville, D.A.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)

  64. Sala, G., van Aken, G.A., Stuart, M.A.C., van de Velde, F.: Effect of droplet-matrix interactions on large deformation properties of emulsion-filled gels. J. Texture Stud. 38(4), 511–535 (2007)

  65. Sala, G., van Vliet, T., Cohen Stuart, M.A., van Aken, G.A., van de Velde, F.: Deformation and fracture of emulsion-filled gels: effect of oil content and deformation speed. Food Hydrocoll. 23(5), 1381–1393 (2009)

  66. Schechter, R.S., Farley, R.W.: Interfacial tension gradients and droplet behavior. Can. J. Chem. Eng. 41(3), 103–107 (1963)

  67. Scriven, L.E.: Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem. Eng. Sci. 12(2), 98–108 (1960)

  68. Seemann, R., Brinkmann, M., Pfohl, T., Herminghaus, S.: Droplet based microfluidics. Rep. Prog. Phys. 75(1), 016601 (2012)

  69. Shiga, T.: Deformation and Viscoelastic Behavior of Polymer Gels in Electric Fields In Advances in Polymer Science, vol. 134, p. 131. Springer, Berlin (1997)

  70. Shingel, K., Roberge, C., Zabeida, O., Robert, M., Klemberg-Sapieha, J.E.: Solid emulsion gel as a novel construct for topical applications: synthesis, morphology and mechanical properties. J. Mater. Sci. 20, 681–689 (2009)

  71. Spells, K.E.: A study of circulation patterns within liquid drops moving through a liquid. Proc. Phys. Soc. B 65(7), 541 (1952)

  72. Squires, T.M., Quake, S.R.: Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

  73. Stone, Z.B., Stone, H.A.: Imaging and quantifying mixing in a model droplet micromixer. Phys. Fluids 17(6), 063103 (2005)

  74. Warshavsky, V.B., Zeng, X.C.: Effect of an electric field on the surface tension of a dipolar-quadrupolar fluid and its implication for sign preference in droplet nucleation. Phys. Rev. Lett. 89, 246104 (2002)

  75. White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (2006)

  76. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)

  77. Wiersema, P.H., Loeb, A.L., Overbeek, J.T.G.: Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interf. Sci. 22(1), 78–99 (1966)

  78. Zhu, Y., Granick, S.: Apparent slip of newtonian fluids past adsorbed polymer layers. Macromolecules 35(12), 4658–4663 (2002)

Download references


The author would like to appreciate the sharif university of technology research council for the financial support.

Author information

Correspondence to Aliasghar Mohammadi.


Appendix 1: Equilibrium Base State

As there exist electrostatic interactions between the hydrogel and the droplet, the equilibrium fixed charge density \(\rho ^{f\circ }\) is not constant, and the equilibrium displacement \({\varvec{v}}^\circ \) is not zero. The equations governing equilibrium (in the absence of external stimuli) are

$$\begin{aligned}&-\epsilon _\circ \epsilon _s \nabla ^2\psi ^\circ = \rho ^{m\circ } + \rho ^{f\circ }\end{aligned}$$
$$\begin{aligned}&{\varvec{u}}^\circ = \mathbf{0}\end{aligned}$$
$$\begin{aligned}&-\varvec{\nabla }p^\circ = \rho ^{m\circ } \varvec{\nabla }\psi ^\circ \end{aligned}$$
$$\begin{aligned}&\frac{\fancyscript{E}}{2(1+\nu )}\Big [ \nabla ^2{\varvec{v}}^\circ +\frac{1}{1-2\nu } \varvec{\nabla }(\varvec{\nabla } \cdot {{\varvec{v}}^\circ }) \Big ] -\rho ^{f\circ } \varvec{\nabla }\psi ^\circ = \mathbf{0}\end{aligned}$$
$$\begin{aligned}&\rho ^{f\circ } = \rho ^{f}_r (1-\varvec{\nabla } \cdot {{\varvec{v}}^\circ })\end{aligned}$$
$$\begin{aligned}&{\varvec{u}}_d^\circ =\mathbf{0}\end{aligned}$$
$$\begin{aligned}&p_d^\circ = \text {constant}\end{aligned}$$
$$\begin{aligned}&\psi _d^\circ = \text {constant}. \end{aligned}$$

The boundary conditions satisfying the fields are \(\psi ^\circ = \zeta \), and \({\varvec{v}}^\circ = \mathbf{0}\) at \(r=a\), and \(\psi ^\circ \rightarrow 0\), \({\varvec{v}}^\circ \rightarrow \mathbf{0}\), \(\rho ^{m\circ }\rightarrow -\rho ^f_r\), \(\rho ^{f\circ }\rightarrow \rho ^f_r\), and \(p^\circ \rightarrow 0\) as \(r\rightarrow \infty \).

To obtain a general solution for the equilibrium condition, we seek an asymptotic approximation for all of the unknowns \(\psi ^\circ \), \(\rho ^{m\circ }\), \(\rho ^{f\circ }\), \({\varvec{v}}^\circ \), and \(p^\circ \). Thus,

$$\begin{aligned} \psi ^{\circ } = \psi ^{\circ }_0 + \left( \frac{e\zeta }{k_B T}\right) \psi ^{\circ }_1 + \fancyscript{O}(\zeta ^2) \end{aligned}$$

with similar expansions for \(\rho ^{m\circ }\), \(\rho ^{f\circ }\), \({\varvec{v}}^\circ \), and \(p^\circ \). Substituting Eq. (100) into Eqs. (92)–(99), and solving the resulting equations results in

$$\begin{aligned} \psi _0^\circ = 0, {\varvec{v}}_0^\circ = \mathbf{0}\text {, }\rho ^{m\circ }_0 = -\rho ^f_r, p_0^\circ = \text {constant}\text {, and }\rho ^{f\circ }_0 = \rho ^f_r \end{aligned}$$

for zeroth-order terms, and

$$\begin{aligned}&\displaystyle \psi _1^\circ = \frac{k_B T}{e} \frac{a}{r} e^{-D(r-a)}\end{aligned}$$
$$\begin{aligned}&\displaystyle {\varvec{v}}_1^\circ = -\frac{k_B T}{e} \frac{\rho ^f_r}{\fancyscript{E}}\frac{(1+\nu )(1-2\nu )}{(1-\nu )}\left[ e^{-Dr} \frac{Dr+1}{D^2 r^2} - e^{-Da} \frac{Da+1}{D^2 r^2} \right] {\varvec{e}}_r\end{aligned}$$
$$\begin{aligned}&\displaystyle \rho ^{m\circ }_1 = - \epsilon _\circ \epsilon _s \kappa ^2 \frac{k_B T}{e} \psi _1^\circ \end{aligned}$$
$$\begin{aligned}&\displaystyle p_1^\circ = \rho ^f_r \psi _1^\circ \end{aligned}$$
$$\begin{aligned}&\displaystyle \rho ^{f\circ }_1 = - \frac{(1+\nu )(1-2\nu )}{(1-\nu )} \epsilon _\circ \epsilon _s \beta ^{2} \psi _1^\circ \end{aligned}$$

for first-order terms. Note that \(D^2 = \kappa ^2+\beta ^2 (1+\nu )(1-2\nu )/(1-\nu )\), with \(\beta ^2={\rho ^{f}_r}^2/(\epsilon _\circ \epsilon _s \fancyscript{E})\); \(\beta ^{-1}\) is a length scale that characterizes the ratio of electrostatic repulsion force among fixed charge to the tensile elastic force. \(D^{-1}\) is the effective electrical double layer thickness, which has contributions from mobile ions and fixed charges. In the limit of incompressible polymer skeleton pursued in this work, \(D\rightarrow \kappa \).

Surprisingly, if the fixed charge and surface potential are like-signed, a layer with an effective thickness \(D^{-1}\) forms, which has a higher polymer segment density than the bulk. Otherwise, a depletion layer with thickness \(D^{-1}\) forms. This unexpected behavior can be explained by the screening effect of counter ions. If the gel and the droplet are like-signed, the net mobile charge density \(\rho ^{m\circ }\) is higher than in the bulk (\(=-\rho ^{f}_r\)), so the electrostatic repulsion among fixed charges is more effectively screened than in the bulk. Otherwise, with oppositely signed charge, the mobile charge density is lower than in the bulk, and the screening effect is reduced.

Appendix 2: Equations Governing Zeroth and First-Order Terms

The equations prevailing zeroth-order terms in \(e\zeta /(k_B T)\) are

$$\begin{aligned}&\epsilon _\circ \epsilon _s \fancyscript{L} \hat{\psi }^X_{0} + \sum _{j=1}^{M+N} z_j e \hat{n}^X_{j0} = 0 \end{aligned}$$
$$\begin{aligned}&\fancyscript{L} \hat{n}^X_{j0} + \frac{n_j^\infty e z_j}{k_B T} \fancyscript{L} \hat{\psi }^X_{0} = 0~(j=1\ldots M+N)\end{aligned}$$
$$\begin{aligned}&\left( \fancyscript{L}-\frac{1}{\ell ^{2}}\right) \fancyscript{L} \frac{dk^X_{0}}{dr} = 0 \end{aligned}$$
$$\begin{aligned}&\fancyscript{L}\fancyscript{L}\hat{\phi }^X_{0} - \frac{\rho ^f_r}{\mu } \fancyscript{L} \hat{\psi }^X_{0} = 0 \end{aligned}$$
$$\begin{aligned}&\fancyscript{L} \fancyscript{L} \frac{df^X_{0}}{dr} + \frac{1}{\ell ^2}\frac{\eta }{\mu } \fancyscript{L} \frac{dk^X_{0}}{dr} = 0\end{aligned}$$
$$\begin{aligned}&\fancyscript{L}\hat{\psi }^X_{d0} = 0 \end{aligned}$$
$$\begin{aligned}&\fancyscript{L} \fancyscript{L} \frac{dM^X_{0}}{dr} = 0\end{aligned}$$
$$\begin{aligned}&\hat{p}^X_0 = \rho ^f_r \hat{\psi }^X_0 + \frac{\eta }{\ell ^2} \frac{d}{dr}\left( r\frac{dk_0^X}{dr} \right) , \end{aligned}$$

and the equations prevailing first-order terms in \(e\zeta /(k_B T)\) are

$$\begin{aligned}&\displaystyle \epsilon _\circ \epsilon _s \fancyscript{L} \hat{\psi }^X_1 + \sum _{j=1}^{M+N} z_j e \hat{n}^X_{j1} = 0 \end{aligned}$$
$$\begin{aligned}&\displaystyle \fancyscript{L} \hat{n}^X_{j1} + \frac{n_j^\infty e z_j}{k_B T} \fancyscript{L}\hat{\psi }^X_1 = \frac{n_j^\infty e z_j^2}{k_B T} \left[ \frac{dG(r)}{dr} \frac{d\hat{\psi }^X_{0}}{dr} + G(r) \fancyscript{L} \hat{\psi }^X_{0} \right] \nonumber \\&\displaystyle -z_j \Bigg [ \frac{dG(r)}{dr} \frac{d\hat{n}^X_{j0}}{dr} + \frac{1}{r^2}\frac{d}{dr}\left( r^2 \frac{dG(r)}{dr} \right) \hat{n}^X_{j0} \nonumber \\&\displaystyle -\frac{n_j^\infty }{D_j} \frac{2}{r} \frac{dG(r)}{dr} \frac{dk^X_{0}}{dr}\Bigg ]~(j=1\ldots M+N)\end{aligned}$$
$$\begin{aligned}&\displaystyle \left( \fancyscript{L}-\frac{1}{\ell ^{2}}\right) \fancyscript{L} \frac{dk^X_1}{dr} = \frac{k_B T}{e\eta } \frac{1}{r}\frac{dG(r)}{dr} \left[ \epsilon _\circ \epsilon _s \kappa ^2 \hat{\psi }^X_{0} + \sum _{j=1}^{M+N} z_j e \hat{n}^X_{j0}\right] \end{aligned}$$
$$\begin{aligned}&\displaystyle \fancyscript{L} \fancyscript{L} \hat{\phi }^X_1 - \frac{\rho ^f_r}{\mu } \fancyscript{L} \hat{\psi }^X_1 = 0\end{aligned}$$
$$\begin{aligned}&\displaystyle \fancyscript{L} \fancyscript{L} \frac{df^X_1}{dr} + \frac{1}{\ell ^2}\frac{\eta }{\mu }\fancyscript{L} \frac{dk^X_1}{dr} = 0\end{aligned}$$
$$\begin{aligned}&\displaystyle \fancyscript{L}\hat{\psi }^X_{d1} = 0\end{aligned}$$
$$\begin{aligned}&\displaystyle \fancyscript{L} \fancyscript{L} \frac{dM^X_1}{dr} = 0 \end{aligned}$$
$$\begin{aligned}&\hat{p}^X_1 = \rho ^f_r \hat{\psi }^X_1 + \frac{\eta }{\ell ^2} \frac{d}{dr}\left( r\frac{dk_1^X}{dr} \right) + \epsilon _\circ \epsilon _s \kappa ^2 \frac{k_B T}{e} G(r) \hat{\psi }^X_0. \end{aligned}$$

Appendix 3: Functional Form of the Velocity Field Outside the Droplet

For determining the velocity field outside the droplet, function \(k_1^E\) is required, which is given by

$$\begin{aligned} \frac{dk_1^E}{dr}&= - u_{d1} \left[ i a e^{a/\ell } h_1^{(1)}\left( ir/\ell \right) + \frac{a\ell ^2(a/\ell +1)}{r^2} \right] \nonumber \\&+\, \epsilon _\circ \epsilon _s \frac{k_B T}{e\eta } e^{\kappa a} \kappa ^2 a^2 \frac{\ell }{96} \left( \frac{a}{r}\right) ^2 \left( \frac{\ell }{r}\right) ^4 \left[ \delta _1 + \delta _2 + \delta _3 - \delta _8 (\delta _4-\delta _5 ) + \delta _6 - \delta _7 \right] ,\nonumber \\ \end{aligned}$$


$$\begin{aligned} \delta _1&= 2 \left( r/\ell \right) ^3 e^{-\kappa r} \left[ \kappa ^3 r^3-\kappa ^2 r^2 + 2 \kappa r + 2 +16(r/a)^3 - \kappa ^4 r^4 e^{\kappa r} \text {E}_1(\kappa r)\right] , \end{aligned}$$
$$\begin{aligned} \delta _2&= (3/\beta _4)\left( 1-r/\ell \right) e^{-\kappa r} \Big [{\beta _{3}} {\beta _4}+16(r/a)^3(\beta _4+\kappa r)\nonumber \\&-{\beta _4}^3 {\beta _5}^2 (r/\ell )^4 e^{\beta _4 (r/\ell )} \text {E}_1\left[ \beta _4 (r/\ell )\right] \Big ],\end{aligned}$$
$$\begin{aligned} \delta _3&= 16 (r/\ell )^3 (r/a)\Big [3 e^{-\kappa a} \left( \kappa ^2 a^2+2 \kappa a + 2\right) \nonumber \\&-(a/r) e^{-\kappa r} \left[ \kappa ^2 a^2 + 2 (r/a) \left( \kappa ^2 r^2+3 \kappa r + 3\right) \right] \Big ]/(\kappa ^2 a^2),\end{aligned}$$
$$\begin{aligned} \delta _4&= (\ell /r)^4 e^{-{\beta _5} (r/ \ell )} \Big [{\beta _{2}} {\beta _5} + 16 (r/a)^3 ({\beta _5}-\kappa r)\nonumber \\&-{\beta _4}^2 {\beta _5}^3 (r/\ell )^4 e^{\beta _5 (r/ \ell )} \text {E}_1\left[ \beta _5 (r/\ell )\right] \Big ],\end{aligned}$$
$$\begin{aligned} \delta _5&= (\ell /a)^4 e^{-\beta _5 (a/ \ell )} \Big [18 {\beta _5} + 2 ({\beta _6}-10 \kappa \ell ) (a/\ell ) - {\beta _4}^2 {\beta _5} (a/\ell )^2 + {\beta _4}^2 {\beta _5}^2 (a/\ell )^3 \nonumber \\&-{\beta _4}^2 {\beta _5}^3 (a/\ell )^4 e^{\beta _5 (a/\ell )} \text {E}_1\left[ \beta _5 (a/\ell )\right] \Big ],\end{aligned}$$
$$\begin{aligned} \delta _6&= ({3}/{\beta _4}) (r/a)^4 e^{-\kappa a} \left[ -{\beta _{1}} e^{(a-r)/\ell }+2 (a/\ell )\right] \Bigg [18 {\beta _4}+2 ({\beta _6}+10 \kappa \ell )(a/\ell ) \nonumber \\&-{\beta _4} {\beta _5}^2 (a/\ell )^2 + {\beta _4}^2 {\beta _5}^2 (a/\ell )^3 -{{\beta _4}^3 {\beta _5}^2 (a/\ell )^4 e^{\beta _4 (a/\ell )} \text {E}_1\left[ \beta _4(a/\ell )\right] }\Bigg ], \end{aligned}$$
$$\begin{aligned} \delta _7&= 2 e^{- \kappa a} (r/a)^3 (r/\ell )\left[ (a/\ell )^2 + 3 (a/\ell ) + 3 -3 \beta _{1} e^{(a-r)/\ell }\right] \nonumber \\&\times \left[ 18+2 \kappa a - \kappa ^2 a^2 + \kappa ^3 a^3 - \kappa ^4 a^4 e^{\kappa a} \text {E}_1(\kappa a)\right] ,\end{aligned}$$
$$\begin{aligned} \delta _8&= 3 (\beta _{1}/\beta _5) (r/\ell )^4 e^{-r/\ell }, \end{aligned}$$


$$\begin{aligned} \beta _{1}&= r/\ell + 1, \end{aligned}$$
$$\begin{aligned} \beta _{2}&= \kappa ^3 r^3\!-\!\kappa ^2 r^2 \!+\! 2 \kappa r \!+\! 2 \!-\! (r/\ell )^2 (\kappa r \!+\! 1) \!+\! (r/\ell ) \left[ \kappa ^2 r^2 - 2 \kappa r -2 - (r/\ell )^2 \right] , \end{aligned}$$
$$\begin{aligned} \beta _{3}&= \kappa ^3 r^3-\kappa ^2 r^2 \!+\! 2 \kappa r \!+\! 2 \!-\! (r/\ell )^2 (\kappa r \!+\! 1) \!-\! (r/\ell ) \left[ \kappa ^2 r^2 \!-\! 2 \kappa r \!-\!2 \!-\! (r/\ell )^2 \right] ,\qquad \end{aligned}$$
$$\begin{aligned} \beta _4&= \kappa \ell + 1, \end{aligned}$$
$$\begin{aligned} \beta _5&= \kappa \ell - 1, \end{aligned}$$
$$\begin{aligned} \beta _6&= \kappa ^2 \ell ^2 + 1. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A. Electrokinetic Mixing and Displacement of Charged Droplets in Hydrogels. Transp Porous Med 104, 469–499 (2014).

Download citation


  • Soft porous media
  • Drop
  • Electric field
  • Mixing
  • Polyelectrolyte gel