Transport in Porous Media

, Volume 108, Issue 1, pp 61–84 | Cite as

Toward Cleaner Geothermal Energy Utilization: Capturing and Sequestering CO\(_2\) and H\(_2\)S Emissions from Geothermal Power Plants

  • Edda S. P. AradóttirEmail author
  • Ingvi Gunnarsson
  • Bergur Sigfússon
  • Gunnar Gunnarsson
  • Bjarni M. Júliusson
  • Einar Gunnlaugsson
  • Hólmfrídur Sigurdardóttir
  • Magnús Th. Arnarson
  • Eric Sonnenthal


Field scale reactive transport models of CO\(_2\) and H\(_2\)S mineral sequestration in basalts were developed with a focus on Reykjavík Energy’s ongoing CarbFix and SulFix sour gas re-injection tests at Hellisheidi geothermal power plant, SW-Iceland. Field data, such as drill cuttings and a calcite cap-rock overlying the high-temperature geothermal reservoir, suggest that mineral CO\(_2\) and H\(_2\)S sequestration already plays an important role within Hellisheidi geothermal system. The data indicate CO\(_2\) sequestration to be most intensive from 550–800-m depth below surface, while H\(_2\)S sequestration is most intensive below 800-m depth. Injecting and precipitating CO\(_2\) and H\(_2\)S into nearby formations with the objective of imitating and accelerating natural sequestration processes should therefore be considered as an environmentally benign process. Reactive transport simulations predict rapid and efficient mineralization of both CO\(_2\) and H\(_2\)S into thermodynamically stable minerals, with calcite, magnesite, and pyrrhotite being the favored carbonate and sulfide minerals to form. At intermediate depths and low temperatures (25–90 \(^\circ \)C), calcite is the main CO\(_2\) sequestering carbonate predicted to form, while magnesite is the only carbonate predicted to form at high temperatures (\(>\)250 \(^\circ \)C). Despite only being indicative, it is concluded from this study that the capture and sequestration of CO\(_2\) and H\(_2\)S from geothermal power plants are a viable option for reducing their gas emissions and that basalts may comprise ideal geological CO\(_2\) and H\(_2\)S storage formations.


Reactive transport modeling CO\(_2\) sequestration H\(_2\)S sequestration CO\(_2\)–H\(_2\)S–water–basalt interaction 



We would like to thank Einar Örn Thrastarson and Trausti Kristinsson for their never-ending contribution to CarbFix and SulFix. We also thank Karsten Pruess, Nic Spycher, and Stefan Finsterle at Lawrence Berkeley National Laboratory, Andri Arnaldsson at Vatnaskil Consulting Engineers, Andri Stefánsson, Helgi A. Alfredsson, Sigurdur R. Gíslason, and Snorri Gudbrandsson at the Institute of Earth Sciences at the University of Iceland, Martin Stute and Juerg M. Matter at Columbia University, Eric H. Oelkers at the University in Toulouse, and Gudni Axelsson, Gunnlaugur Einarsson and Thráinn Fridriksson at Iceland GeoSurvey. This work was funded by Reykjavík Energy, the 7th Framework Programme of the EC (project no. 283148) and GEORG Geothermal Research Group (project no. 09-02-001).


  1. Alfredsson, H., Oelkers, E., Hardarson, B., Franzson, H., Gíslason, S.: The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. Int. J. Greenh. Gas Control 12, 399–418 (2013)CrossRefGoogle Scholar
  2. Aradóttir, E., Sigurdardóttir, H., Sigfússon, B., Gunnlaugsson, E.: CarbFix—a CCS pilot project imitating and accelerating natural CO\(_2\) sequestration. Greenh. Gases Sci. Technol. 1, 105–118 (2011)CrossRefGoogle Scholar
  3. Aradóttir, E., Sonnenthal, E., Björnsson, G., Jónsson, H.: Multidimensional reactive transport modeling of CO\(_2\) mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int. J. Greenh. Gas Control 9, 24–40 (2012a)CrossRefGoogle Scholar
  4. Aradóttir, E.S.P., Sonnenthal, E.L., Jónsson, H.: Development and evaluation of a thermodynamic dataset for phases of interest in CO\(_2\) sequestration in basaltic rocks. Chem. Geol. 304–305:26–38, (2012b)
  5. Arnorsson, S.: Hydrothermal systems in Iceland: structure and conceptual models. 1. High-temperature areas. Geothermics 24, 561–602 (1995a)CrossRefGoogle Scholar
  6. Arnorsson, S.: Hydrothermal systems in Iceland: structure and conceptual models. 2. Low-temperature areas. Geothermics 24, 329–603 (1995b)Google Scholar
  7. Benning, L., Wilkin, R., Barnes, H.: Reaction pathways in the Fe-S system below 100\(^\circ \)C. Chem. Geol. 167, 25–51 (2000)CrossRefGoogle Scholar
  8. Broecker, W.: Climate change: CO\(_2\) arithmetic. Science 315, 1371 (2007)CrossRefGoogle Scholar
  9. Cahill, C., Benning, L., Barnes, H., Parise, J.: In situ time-resolved X-ray diffraction of iron sulfides during hydrothermal pyrite growth. Chem. Geol. 167, 53–63 (2000)CrossRefGoogle Scholar
  10. Carroll, S., Mroczek, E., Alai, M., Ebert, M.: Amorphous silica precipitation (60 to 120 \(^\circ \)C): comparison of laboratory and field rates. Geochim. Cosmochim. Acta 62, 1379–1396 (1998)CrossRefGoogle Scholar
  11. Finsterle, S.: iTOUGH2 User’s Guide. LBNL-40040. Lawrence Berkeley National Laboratory, Berkeley, CA (1999)Google Scholar
  12. Flaathen, T., Gíslason, S., Oelkers, E., Sveinbörnsdottir, A.: Chemical evolution of the Mt. Hekla, Iceland, groundwaters: a natural analogue for CO\(_2\) sequestration in basaltic rocks. Appl. Geochem. 24, 463–474 (2009)CrossRefGoogle Scholar
  13. Franzson, H., Gunnlaugsson, E., Árnason, K., Saemundsson, K., Steingr\(\acute{\rm m}\)sson, B., Hardarson, B.S.: The Hengill Geothermal System, Conceptual Model and Thermal Evolution. In: Proceedings, World Geothermal Congress, Bali, Indonesia, 25–29 April (2010)Google Scholar
  14. Gebrehiwot, K., Koestono, H., Franzson, H., Mortensen, A.K.: Borehole geology and hydrothermal alteration of well HE-24, hellisheidi geothermal field, SW-Iceland. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April (2010)Google Scholar
  15. Gíslason, S., Oelkers, E.: Mechanisms, rates and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a funciton of temperature. Geochim. Cosmochim. Acta 67, 3817–3832 (2003)CrossRefGoogle Scholar
  16. Gíslason, S., Heaney, P., Oelkers, E., Schott, J.: Kinetic and thermodynamic properties of moganite, a novel silica polymorph. Geochim. Cosmochim. Acta 61, 1193–1204 (1997)CrossRefGoogle Scholar
  17. Gíslason, S.R., Wolff-Boenisch, D., Stefánsson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardóttir, H., Sigfússon, B., Broecker, W.S., Matter, J.M., Stute, M., Axelsson, G., Fridriksson, T.: Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. Int. J. Greenh. Gas Control 4, 537–545 (2010)Google Scholar
  18. Gislason, S.R., Oelkers, E.H.: Carbon storage in basalt. Science 344, 373 (2014)Google Scholar
  19. Gudbrandsson, S., Wolff-Boenisch, D., Gíslason, S., Oelkers, E.: An experimental study of crystalline basalt dissolution from 2 \(\le \) pH \(\le \) 11 and temperatures from 5 to 75 \(^\circ \)C. Geochim. Cosmochim. Acta 75, 5496–5509 (2011)CrossRefGoogle Scholar
  20. Gunnarsson, G., Arnaldsson, A., Oddsdóttir, A.L.: Model simulations of the Hengill Area, Southwestern Iceland. Transp. Porous Media 90, 3–22 (2011a). doi: 10.1007/s11242-010-9629-1 CrossRefGoogle Scholar
  21. Gunnarsson, I., Arnórsson, S., Jakobsson, S.: Precipitation of poorly crystalline antigorite under hydrothermal conditions. Geochim. Cosmochim. Acta 69, 2813–2828 (2005)CrossRefGoogle Scholar
  22. Gunnarsson, I., Sigfússon, B., Stefánsson, A., Scott, S., Gunnlaugsson, E.: Injection of H\(_2\)S from Hellisheidi power plant, Iceland. In: Proceedings, 36th Workshop on Geothermal Reservoir Engineering (2011b)Google Scholar
  23. Gysi, A., Stefánsson, A.: Mineralogical aspects of CO\(_2\) sequestration during hydrothermal basalt alteration—an experimental stdy at 75 to 250 degrees C and elevated pCO\(_2\). Chem. Geol. 306, 146–159 (2012)CrossRefGoogle Scholar
  24. Helgadóttir, H.M., Snaebjörnsdottir, S.O., Níelsson, S., Gunnarsdóttir, S.H., Matthíasdóttir, T., Hardarson, B.S., Einarsson, G.M., Franzson, H.: Geology and hydrothermal alteration in the reservoir of the Hellisheidi high temperature system, SW-Iceland. In: Proceedings, World Geothermal Congress, Bali, Indonesia, 25–29 April (2010)Google Scholar
  25. Holland, T., Powell, R.: An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343 (1998)CrossRefGoogle Scholar
  26. Knauss, K.G., Johnson, J.W., Steefel, C.I.: Evaluation of the impact of CO\(_2\), co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO\(_2\). Chem. Geol. 217, 339–350 (2005)CrossRefGoogle Scholar
  27. Kristmannsdóttir, H., Tómasson, I.: Zeolite Zones in Geothermal Areas in Iceland in Natural Zeolites. Pergamon Press, Oxford (1978)Google Scholar
  28. Matter, J., Broecker, W., Gíslason, S.R., Gunnlaugsson, E., Oelkers, E., Stute, M., Sigurdardóttir, H., Stefánsson, A., Alfredsson, H., Aradóttir, E., Axelsson, G., Sigfússon, B., Wolff-Boenisch, D.: The CarbFix Pilot Project—storing carbon dioxide in basalt. Elements 4, 5579–5585 (2011)Google Scholar
  29. Neuhoff, P., Fridriksson, T., Arnorsson, S., Bird, D.: Porosity changes and mineral paragenesis during low-grade metamorphism at Teigarhorn, eastern Iceland. Am. J. Sci. 299, 467–501 (1999)CrossRefGoogle Scholar
  30. Neuhoff, P., Rogers, K., Stannius, L., Bird, D., Pedersen, A.: Regional very low-grade metamorphism of basaltic lavas, Disko-Nuussuaq region, West-Greenland. Lithos 92, 55–85 (2006)CrossRefGoogle Scholar
  31. Níelsson, S., Franzson, H.: Geology and Hydrothermal alteration of the Hverahlíd HT-System, SW-Iceland. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010Google Scholar
  32. Oelkers, E., Cole, D.: Carbon dioxide sequestration: a solution to a global problem. Elements 4, 305–310 (2008)CrossRefGoogle Scholar
  33. Oelkers, E., Gíslason, S.: The mechamism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentrations at 25\(^\circ \)C and pH = 3 and 11. Geochim. Cosmochim. Acta 65, 3671–3681 (2001)CrossRefGoogle Scholar
  34. Oelkers, E., Gíslason, S., Matter, J.: Mineral carbonation of CO\(_2\). Elements 4, 331–335 (2008)Google Scholar
  35. Palandri, J., Kharaka, Y.: A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Report 2004–1068 (2004)Google Scholar
  36. Palandri, J., Kharaka, Y.: Ferric iron-bearing sediments as a mineral trap for co\(_2\) sequestration: iron reduction using sulfur-bearing waste gas. Chem. Geol. 217, 351–364 (2005)CrossRefGoogle Scholar
  37. Pruess, K.: Mathematical modeling of fluid flow and heat transfer in geothermal systems—an introduction in five lectures. United Nations University Geothermal Training Programme 2002—Report 3 and LBNL-51295 (2002)Google Scholar
  38. Ragnheidardóttir, E., Sigurdardóttir, H., Kristjánsdóttir, H., Harvey, W.: Opportunities and challenges for CarbFix: An evaluation of capacities and costs for the pilot scale mineralization sequestration project at Hellisheidi, Iceland and beyond. Int. J. Greenh. Gas Control 5, 1065–1072 (2011)Google Scholar
  39. Rezvani Khalilabad, M., Axelsson, G., Gíslason, S.: Aquifer characterization with tracer test technique; permanent CO\(_2\) sequestration into basalt, SW Iceland. Mineral. Mag. 72(1), 121–125 (2008)CrossRefGoogle Scholar
  40. Rickard, D., Luther, G.W.: Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007)CrossRefGoogle Scholar
  41. Rimstidt, J.D., Barnes, H.L.: The kinetics of silica–water reactions. Geochim. Cosmochim. Acta 44, 1683–1699 (1980)Google Scholar
  42. Scott, S., Gunnarsson, I., Arnórsson, S., Gunnlaugsson, E.: Gas chemistry of the Hellisheidi geothermal field, SW-Iceland. In: Proceedings, 36th Workshop on Geothermal Reservoir Engineering (2011)Google Scholar
  43. Sigfússon, B., Gíslason, S., Matter, J., Stute, M., Gunnlaugsson, E., Gunnarsson, I., Aradóttir, E., Sigurdardóttir, H., Mesfin, K., Alfredsson, H., Wolff-Boenisch, D., Arnarsson, M., Oelkers, E.: Injection of dissolved CO\(_2\) into the subsurface: A novel carbon storage method (in review)Google Scholar
  44. Steefel, C.I., Maher, K.: Fluid-rock interaction: a reactive transport approach. Rev. Mineral. Geochem. 70, 485–533 (2009)CrossRefGoogle Scholar
  45. Stefánsson, A.: Dissolution of primary minerals of basalt in natural waters I. Calculation of mineral solubilities from 0\(^\circ \)C to 350\(^\circ \)C. Chem. Geol. 172, 225–250 (2001)CrossRefGoogle Scholar
  46. Stefánsson, A., Arnórsson, S., Gunnarsson, I., Kaasalainen, H.: H\(_2\)S Disposal at Hellisheidi Power Plant: A Geochemical Study (2009)Google Scholar
  47. Stefánsson, A., Arnórsson, S., Gunnarsson, I., Kaasalainen, H., Gunnlaugsson, E.: The geochemistry and sequestration of H\(_2\)S into the geothermal system at Hellisheidi, Iceland. Volcan. Geotherm. Res. 202:179–188 (2011)Google Scholar
  48. Stockmann, G., Wolff-Boenisch, D., Gíslason, S., Oelkers, E.: Do carbonate precipitates affect dissolution kinetics? 1: basaltic glass. Chem. Geol. 284, 306–316 (2011)CrossRefGoogle Scholar
  49. Walker, G.: Zeolite zones and dike distribution in relation to the structure of the basalts of eastern Iceland. J. Geol. 68, 515–528 (1960)CrossRefGoogle Scholar
  50. Wiese, F., Fridriksson, T., Armannsson, H.: CO\(_2\) fixation by calcite in high-temperature geothermal systems in Iceland. Tech. rep., ISOR-2008/003, Iceland Geosurvey, Report available at: (2008)
  51. World Health Organization ROfE.: Air quality guidelines for Europe. European Series No. 91 (2000)Google Scholar
  52. Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT User’s Guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. LBNL-55460. Lawrence Berkeley National Laboratory, Berkeley, CA (2005)Google Scholar
  53. Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO\(_2\) geologic sequestration. Comput. Geosci. 32, 146–165 (2006)Google Scholar
  54. Xu, T., Apps, J., Pruess, K., Yamamoto, H.: Numerical modeling of injection and mineral trapping of CO\(_2\) with H\(_2\)S and SO\(_2\) in a sandstone formation. Chem. Geol. 242, 319–346 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Edda S. P. Aradóttir
    • 1
    Email author
  • Ingvi Gunnarsson
    • 1
  • Bergur Sigfússon
    • 2
  • Gunnar Gunnarsson
    • 1
  • Bjarni M. Júliusson
    • 1
  • Einar Gunnlaugsson
    • 1
  • Hólmfrídur Sigurdardóttir
    • 1
  • Magnús Th. Arnarson
    • 3
  • Eric Sonnenthal
    • 4
  1. 1.Reykjavík EnergyReykjavíkIceland
  2. 2.European CommissionInstitute for Energy and Transport PettenNetherlands
  3. 3.Mannvit EngineeringReykjavíkIceland
  4. 4.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations