Transport in Porous Media

, Volume 103, Issue 1, pp 69–98 | Cite as

Water Vapor Sorption in Cementitious Materials—Measurement, Modeling and Interpretation

  • Aditya Kumar
  • Sabrina Ketel
  • Kirk Vance
  • Tandre Oey
  • Narayanan Neithalath
  • Gaurav SantEmail author


The rate and extent of uptake and release of moisture are critical in controlling the behavior of cementitious materials ranging from fluid transport to hygral deformations. While classically determined using an equilibrium (static) salt solution method (Baroghel-Bouny in Cem Concr Res 37:414–437, 2007), advanced capabilities offered by gravimetric dynamic vapor sorption (DVS) analyzers, are now permitting acquisition of sorption spectra at microgram (\(\upmu \hbox {g}\)) resolution on the order of a few weeks. This work highlights new multicycle determinations of adsorption/desorption isotherms, acquired using a custom-built DVS analyzer for well-hydrated alite and ordinary portland cement pastes over a range of water-to-solid ratios (\(w/s\), mass basis). Special focus is paid to describe measurement aspects relevant to acquiring reliable spectra, and their interpretation. Sorption isotherms are used to assess transport properties, and sorption hysteresis and its irreversibility following first drying. Based on an optimization-based criterion, the Young-Nelson model is selected to simulate sorption evolutions, including the effects of hysteresis. Sensitivity analyses carried out using this model are used to understand the role of parameters, including porosity and \(w/s\), on the hysteresis that develops from the first to subsequent sorption cycles.


Sorption Desorption Water vapor Surface area BET Hysteresis 



The authors acknowledge full financial support for this research provided by the University of California, Los Angeles (UCLA). The authors would like to acknowledge Gwenn Le Saout (École des Mines d’Alès) for quantitative x-ray diffraction analyses (QXRD) of the alite and cement. The contents of this paper reflect the views of the authors who are responsible for the accuracy of datasets presented herein. This research was conducted in the Laboratory for the Chemistry of Construction Materials (\(\hbox {LC}^{2})\) in the Department of Civil and Environmental Engineering and the Molecular Instrumentation Center (MIC) in the Department of Chemistry and Biochemistry at the University of California, Los Angeles (UCLA) and Laboratory for the Science of Sustainable Infrastructural Materials (LS-SIM) at Arizona State University (ASU). The authors acknowledge the support of these laboratories in making this research possible.


  1. Adolphs, J., Setzer, M.J.: Description of gas adsorption isotherms on porous and dispersed systems with the excess surface work model. J. Colloid Interface Sci. 207(2), 349–354 (1998)CrossRefGoogle Scholar
  2. Åhs, M.S.: Sorption scanning curves for hardened cementitious materials. Constr. Build. Mater. 22(11), 2228–2234 (2008)CrossRefGoogle Scholar
  3. Aligizaki, K.K.: Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements. Taylor & Francis, London (2006)Google Scholar
  4. Anderson, R.B., Hall, K.W.: Modification of the Brunauer, Emmett and Teller equation II. J. Am. Chem. Soc. 70, 1727–1734 (1948)CrossRefGoogle Scholar
  5. Badmann, R., Stockhausen, N., Setzer, M.J.: The statistical thickness and the chemical potential of adsorbed water films. J. Colloid Interface Sci. 82(2), 534–542 (1981)CrossRefGoogle Scholar
  6. Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., Coussy, O.: Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem. Concr. Res. 29(8), 1225–1238 (1999)CrossRefGoogle Scholar
  7. Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials: part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem. Concr. Res. 37(3), 414–437 (2007)CrossRefGoogle Scholar
  8. Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials. Part II: essential tool for assessment of transport properties and for durability prediction. Cem. Concr. Res. 37(3), 438–454 (2007)CrossRefGoogle Scholar
  9. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)CrossRefGoogle Scholar
  10. Bazant, M.Z., Bažant, Z.P.: Theory of sorption hysteresis in nanoporous solids: II. Molecular condensation. J. Mech. Phys. Solids 60, 1660–1675 (2012)CrossRefGoogle Scholar
  11. Bazant, Z.P., Bazant, M.Z.: Theory of sorption hysteresis in nanoporous solids: I. Snap-through instabilities. (2011)
  12. Bazant, Z.P., Robert, L.: Mathematical Modeling of Creep and Shrinkage of Concrete. Wiley, Chichester (1988)Google Scholar
  13. Bazant, Z.P., Thonguthai, W.: Pore pressure and drying of concrete at high temperature. J. Eng. Mech. Div. 104(5), 1059–1079 (1978)Google Scholar
  14. Bentz, D.P., Snyder, K.A., Cass, L.C., Peltz, M.A.: Doubling the service life of concrete. I: reducing ion mobility using nanoscale viscosity modifiers. Cem. Concr. Compos. 30(8), 674–678 (2008)CrossRefGoogle Scholar
  15. Bradley, R.S.: Polymolecular adsorbed films. Part I. The adsorption of argon on salt crystals at low temperatures, and the determination of surface fields. J. Chem. Soc. (Resumed) 1467–1474 (1936). doi: 10.1039/JR9360001467
  16. Bravo-Osuna, I., Ferrero, C., Jimenez-Castellanos, M.R.: Water sorption-desorption behaviour of methyl methacrylate-starch copolymers: effect of hydrophobic graft and drying method. Eur. J. Pharm. Biopharm. 59(3), 537–548 (2005)CrossRefGoogle Scholar
  17. Brouwers, H.J.H., VanEijk, R.J.: Alkali concentrations of pore solution in hydrating OPC. Cem. Concr. Res. 33(2), 191–196 (2003)CrossRefGoogle Scholar
  18. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRefGoogle Scholar
  19. Brunauer, S.: Physical adsorption. The Adsorption of Gases and Vapors, vol. 1. Princeton University Press, Princeton (1943)Google Scholar
  20. Brunauer, S., Skalny, J., Bodor, E.E.: Adsorption on nonporous solids. J. Colloid Interface Sci. 30(4), 546–552 (1969)CrossRefGoogle Scholar
  21. Carmeliet, J., Hugo Hns, S., Adan, O., Brocken, H., Cerny, R., Pavlik, Z., Hall, C., Krishnan, K., Leo, P.: Determination of the liquid water diffusivity from transient moisture transfer experiments. J. Therm. Envel. Build. Sci. 27(4), 277–305 (2004)Google Scholar
  22. Christensen, B.J., Coverdale, R.T., Olson, R.A., Ford, S.J., Garboczi, E.J., Jennings, H.M., Mason, T.O.: Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application. J. Am. Ceram. Soc. 77(11), 2789–2802 (1994)CrossRefGoogle Scholar
  23. Chung, D.S., Pfost, H.B.: Adsorption and desorption of water vapor by cereal grains and their products. Part I. Heat and free energy changes of adsorption and desorption. Trans. ASAE 10, 549–551 (1967)CrossRefGoogle Scholar
  24. Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, Chichester (2011)Google Scholar
  25. Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1979)Google Scholar
  26. Daian, J.F.: Condensation and isothermal water transfer in cement mortar Part I—Pore size distribution, equilibrium water condensation and imbibition. Transp. Porous Media 3(6), 563–589 (1988)CrossRefGoogle Scholar
  27. Daian, J.F.: Condensation and isothermal water transfer in cement mortar: Part II-transient condensation of water vapor. Transp. Porous Media 4(1), 1–16 (1989)CrossRefGoogle Scholar
  28. De Belie, N., Kratky, J., Van Vlierberghe, S.: Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cem. Concr. Res. 40(12), 1723–1733 (2010)CrossRefGoogle Scholar
  29. De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., Van den Heuvel, A., Osinga, T.J.: The t-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 21(4), 405–414 (1966)CrossRefGoogle Scholar
  30. De La Torre, Á.G., Bruque, S., Campo, J., Aranda, M.A.: The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses. Cem. Concr. Res. 32(9), 1347–1356 (2002)CrossRefGoogle Scholar
  31. Despond, S., Espuche, E., Domard, A.: Water sorption and permeation in chitosan films relation between gas permeability and relative humidity. J. Polym. Sci. Part B 39(24), 3114–3127 (2001)CrossRefGoogle Scholar
  32. Diamond, S.: A critical comparison of mercury porosimetry and capillary condensation pore size distributions of portland cement pastes. Cem. Concr. Res. 1(5), 531–545 (1971)CrossRefGoogle Scholar
  33. Diamond, S.: Identification of hydrated cement constituents using a scanning electron microscope energy dispersive X-ray spectrometer combination. Cem. Concr. Res. 2(5), 617–632 (1972)CrossRefGoogle Scholar
  34. Espinosa, R.M., Franke, L.: Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cem. Concr. Res. 36(10), 1969–1984 (2006)CrossRefGoogle Scholar
  35. Espinosa, R.M., Franke, L.: Inkbottle pore-method: prediction of hygroscopic water content in hardened cement paste at variable climatic conditions. Cem. Concr. Res. 36(10), 1954–1968 (2006)CrossRefGoogle Scholar
  36. Feldman, R.F., Sereda, P.J., Ramachandran, V.S.: A study of length changes of compacts of portland cement on exposure to \(\text{ H }_{2}\text{ O }\). Highw. Res. Board 62, 106–118 (1964)Google Scholar
  37. Feldman, R.F., Sereda, P.J.: Sorption of water on compacts of bottle-hydrated cement. II. Thermodynamic considerations and theory of volume change. J. Appl. Chem. 14(2), 93–104 (1964)CrossRefGoogle Scholar
  38. Ferro-Fontan, C., Chirife, J., Sancho, E., Iglesias, H.A.: Analysis of a model for water sorption phenomena in foods. J. Food Sci. 47, 1590–1594 (1982)CrossRefGoogle Scholar
  39. Freundlich, H., Hatfield, H.S.: Colloid and Capillary Chemistry, vol. 52. Methuen and Co, London (1926)Google Scholar
  40. Garboczi, E.J., Bullard, J.W.: Shape analysis of a reference cement. Cem. Concr. Res. 34, 1933–1937 (2004)CrossRefGoogle Scholar
  41. Hagymassy Jr, J., Brunauer, S., Mikhail, R.S.: Pore structure analysis by water vapor adsorption: I. t-curves for water vapor. J. Colloid Interface Sci. 29(3), 485–491 (1969)CrossRefGoogle Scholar
  42. Hall, C., Hoff, W.D.: Water Transport in Brick, Stone and Concrete. Taylor & Francis, London (2009)Google Scholar
  43. Halsey, G.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16(10), 931 (1948)CrossRefGoogle Scholar
  44. Henderson, S.M.: A basic concept of equilibrium moisture. Agric. Eng. 33, 29–32 (1952)Google Scholar
  45. Jennings, H.M.: A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res. 30(1), 101–116 (2000)CrossRefGoogle Scholar
  46. Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34(11), 8179–8181 (1986)CrossRefGoogle Scholar
  47. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)CrossRefGoogle Scholar
  48. Le Saoût, G., Kocaba, V., Scrivener, K.: Application of the Rietveld method to the analysis of anhydrous cement. Cem. Concr. Res. 41(2), 133–148 (2011)CrossRefGoogle Scholar
  49. Melkote, R.R., Jensen, K.F.: Computation of transition and molecular diffusivities in fibrous media. AIChE J. 38(1), 56–66 (1992)CrossRefGoogle Scholar
  50. Mindess, S., Young, J.F., Darwin, D.: Concrete. Pearson Education Inc., Upper Saddle River (2003)Google Scholar
  51. Mounanga, P., Khelidj, A., Loukili, A., Baroghel-Bouny, V.: Predicting \(\text{ Ca(OH) }_{2}\) content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem. Concr. Res. 34(2), 255–265 (2004)CrossRefGoogle Scholar
  52. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)CrossRefGoogle Scholar
  53. Odler, I.: The BET-specific surface area of hydrated Portland cement and related materials. Cem. Concr. Res. 33(12), 2049–2056 (2003)CrossRefGoogle Scholar
  54. Oswin, C.R.: The kinetics of package life III. The isotherm. J. Soc. Chem. Ind. Lond. 65, 419–421 (1946)CrossRefGoogle Scholar
  55. Powers, T.C., Brownyard, T.L.: Studies of the Physical Properties of Hardened Portland Cement Paste. Bulletin 22: Portland Cement Association, p. 356 (1948)Google Scholar
  56. Powers, T.C.: The Non-evaporable Water Content of Hardened Portland-Cement Paste-Its Significance for Concrete Research and Its Methods of Determination. Bulletin 29: Portland Cement Association, p. 17 (1949)Google Scholar
  57. Poyet, S.: Experimental investigation of the effect of temperature on the first desorption isotherm of concrete. Cem. Concr. Res. 39(11), 1052–1059 (2009)CrossRefGoogle Scholar
  58. Quenard, D., Sallee, H.: Water vapour adsorption and transfer in cement-based materials: a network simulation. Mater. Struct. 25(9), 515–522 (1992)CrossRefGoogle Scholar
  59. Rajabipour, F., Weiss, J.: Electrical conductivity of drying cement paste. Mater. Struct. 40(10), 1143–1160 (2007)CrossRefGoogle Scholar
  60. Reinhardt, H.E. (ed.): Penetration and Permeability of Concrete: Barriers to Organic and Contaminating Liquids, vol. 16. Taylor & Francis, London (1997)Google Scholar
  61. Rosner, D.E., Mackowski, D.W., Tassopoulos, M., Castillo, J., Garcia-Ybarra, P.: Effects of heat transfer on the dynamics and transport of small particles suspended in gases. Ind. Eng. Chem. Res. 31(3), 760–769 (1992)CrossRefGoogle Scholar
  62. Sant, G., Bentz, D.P., Weiss, J.: Capillary porosity depercolation in cement-based materials: measurement techniques and factors which influence their interpretation. Cem. Concr. Res. 41(8), 854–864 (2011)CrossRefGoogle Scholar
  63. Smith, S.E.: The sorption of water vapor by high polymers. J. Am. Chem. Soc. 69, 646 (1947)CrossRefGoogle Scholar
  64. Snyder, K.A., Feng, X., Keen, B.D., Mason, T.O.: Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations. Cem. Concr. Res. 33(6), 793–798 (2003)CrossRefGoogle Scholar
  65. Tada, S., Watanabe, K.: Dynamic determination of sorption isotherm of cement based materials. Cem. Concr. Res. 35(12), 2271–2277 (2005)CrossRefGoogle Scholar
  66. Taylor, H.F.: A method for predicting alkali ion concentrations in cement pore solutions. Adv. Cem. Res. 1(1), 5–17 (1987)CrossRefGoogle Scholar
  67. Taylor, H.F.: Cement chemistry. Thomas Telford (1997)Google Scholar
  68. Thomas, J.J., Jennings, H.M.: A colloidal interpretation of chemical aging of the CSH gel and its effects on the properties of cement paste. Cem. Concr. Res. 36(1), 30–38 (2006)CrossRefGoogle Scholar
  69. Thomas, J.J., Jennings, H.M., Allen, A.J.: Relationships between composition and density of tobermorite, jennite, and nanoscale \(\text{ CaO- } \text{ SiO }_{2}- \text{ H }_{2}\text{ O }\). J. Phys. Chem. C 114(17), 7594–7601 (2010)CrossRefGoogle Scholar
  70. Thomas, J.J., Jennings, H.M., Allen, A.J.: The surface area of hardened cement paste as measured by various techniques. Concr. Sci. Eng. 1, 45–64 (1999)Google Scholar
  71. Van den Berg, C.: Development of BET-like models for sorption of water on foods, theory and relevance. Properties of Water in Foods. Springer, Netherlands (1985)Google Scholar
  72. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRefGoogle Scholar
  73. Weiss, J., Lura, P., Rajabipour, F., Sant, G.: Performance of shrinkage-reducing admixtures at different humidities and at early ages. ACI Mater. J. 105(5), 478 (2008)Google Scholar
  74. Xi, Y., Bažant, Z.P., Molina, L., Jennings, H.M.: Moisture diffusion in cementitious materials moisture capacity and diffusivity. Adv. Cem. Based Mater. 1(6), 258–266 (1994)CrossRefGoogle Scholar
  75. Young, J.H., Nelson, G.L.: Research of hysteresis between sorption and desorption isotherms of wheat. Trans. Am. Soc. Agric. Eng. 10(6), 756–761 (1967)Google Scholar
  76. Young, J.H., Nelson, G.L.: Theory of hysteresis between sorption and desorption isotherms in biological materials. Trans. Am. Soc. Agric. Eng. 10, 260–263 (1967)Google Scholar
  77. Zhang, J., Scherer, G.W.: Permeability of shale by the beam-bending method. Int. J. Rock Mech. Min. Sci. 53, 179–191 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Aditya Kumar
    • 1
  • Sabrina Ketel
    • 1
  • Kirk Vance
    • 2
  • Tandre Oey
    • 1
  • Narayanan Neithalath
    • 2
  • Gaurav Sant
    • 1
    • 3
    Email author
  1. 1.Laboratory for the Chemistry of Construction Materials (LC²), Department of Civil & Environmental EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.School of Sustainable Engineering and the Built EnvironmentArizona State UniversityTempeUSA
  3. 3.California Nanosystems Institute (CNSI)University of CaliforniaLos AngelesUSA

Personalised recommendations