Transport in Porous Media

, Volume 103, Issue 1, pp 1–24 | Cite as

Influence of Ionic Strength and Flow Rate on Silt Particle Deposition and Release in Saturated Porous Medium: Experiment and Modeling

  • Zyed Mesticou
  • Mariem Kacem
  • Philippe Dubujet


In this paper, the influence of ionic strength on the dynamic transport of silt microparticles through saturated sand texture is studied in the presence of repulsive interactions. The deposition and release phenomenon is investigated through experimental column trials. Different ionic strengths are applied by adjustment of suspension salinity. Two trial configurations are performed: Monotonic experiments highlight particle deposition mechanisms, and non-monotonic tests focus on release phenomena under ionic strength and flow rate perturbations. Through this experimental study, the ionic strength influence on the deposition and release phenomenon is shown. The presence of both mechanical and physico-chemical mechanisms is proved experimentally. This study proves that ionic strength variation is a primal parameter which predicts the attachment and detachment of particles at constant flow. These experiments are simulated and reproduced through a numerical model based on original deposit and release kinetics which are proposed in this study. This model is the coupling of two multiphasic problems describing conservative salt and microparticle transport. The proposed kinetics formulations are founded on performed experimental test constitutions in this study. They take into account the flow rate and the suspension ionic strength. The suggested model reproduces well the experimental description of the suspended particles transport under the influence of ionic strength and flow velocity variations. It permits to predict the deposition and release phenomenon.


Saturated porous medium Microparticles Deposition and release phenomenon Mechanic and physico-chemical mechanisms Ionic strength  Flow velocity Dynamic transport model First order kinetics 


  1. Ahfir, N.D., Wang, H.Q., Benamar, A., Alem, A., Massei, N., Dupont, J.P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15(4), 659–668 (2006)CrossRefGoogle Scholar
  2. Ahfir, N.D., Benamar, A., Alem, A., Wang, H.Q.: Transport et cinétique de dépôt des particules en suspension dans un milieu poreux granulaire: étude des mécanismes de rétention des particules. 18 ème Congrès Français de mécanique le 27–31 août 2007, Grenoble (2007)Google Scholar
  3. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)Google Scholar
  4. Bergna, H.E., William, O.R.: Colloidal Silica. Fundamentals and Applications (Surfactant Science Series), vol. 131. CRC Press Taylor & Francis Group, Boca Raton (2006)Google Scholar
  5. Blume, T., Weisbrodc, N., Selker, J.S.: On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments. Geoderma 124(1–2), 121–132 (2005)CrossRefGoogle Scholar
  6. Bradford, S.A., Kim, H.G., Haznedaroglu, B.Z., Torkbzaban, S., Walker, S.L.: Coupled factors influencing concentration dependent colloid transport and retention in saturated porous media. Environ. Sci. Technol. 43(18), 6996–7002 (2009)CrossRefGoogle Scholar
  7. Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41(13), 3012–3024 (2007)CrossRefGoogle Scholar
  8. Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Res. 38(12), 1327–1338 (2002)Google Scholar
  9. Cerda, C.M.: Mobilization of kaolinite fines in porous media. Colloids Surf. 27(1—-3), 219–241 (1987)CrossRefGoogle Scholar
  10. Compère, F., Porel, G., Delay, F.: Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. J. Contam. Hydrol. 49(1–2), 1–21 (2001)CrossRefGoogle Scholar
  11. Cumbie, D., McKay, L.: Influence of diameter on particle transport in a fractured shale saprolite. J. Contam. Hydrol. 37, 139–157 (1999)CrossRefGoogle Scholar
  12. Marsily, De: Hydrogéologie Quantitative. Masson, Paris (1981)Google Scholar
  13. Derjaguin, B.V., Landau, L.D.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chem. URSS 14, 633–662 (1941)Google Scholar
  14. Djehiche, A., Canseco, V., Omari, A., Bertin, H.: Étude expérimentale du dépôt de particules colloïdales en milieu poreux : Influence de l’hydrodynamique et de la salinité. C. R. Mecanique 337, 682–692 (2009)CrossRefGoogle Scholar
  15. Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle deposition and aggregation: measurement, modeling, and simulation. Langmuir 26, 16690–16698 (1995)Google Scholar
  16. Elimelech, M., Nagai, M., Ko, C., Ryan, J.: Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci. Technol. 34, 2143–2148 (2000)CrossRefGoogle Scholar
  17. Fan, Z., Casey, F.X.M., Hakk, H., Larsen, G.L., Khan, E.: Sorption, fate, and mobility of sulfonamides in soils. Water Air Soil Pollut. 218, 49–61 (2011)CrossRefGoogle Scholar
  18. Fauré, M.H., Sardin, M., Vitorge, P.: Transport of clay particles and radioelements in a salinity gradient experiments and simulations. J. Contam. Hydrol. 21, 255–267 (1996)CrossRefGoogle Scholar
  19. Florian, K., Kurt, B., Bhattacharjee, S., Elimelech, M., Kretzchmar, R.: Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition. J. Colloid Interface Sci. 231, 32–41 (2000)CrossRefGoogle Scholar
  20. Fontes, D.E., MILLS, A.L., Hornberger, G.M., Herman, J.S.: Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57(9), 2473–2481 (1991)Google Scholar
  21. Foppen, J.W., Van Herwerden, M., Schijven, J.: Measuring and modelling straining of Escherichia coli in saturated porous media. J. Contam. Hydrol. 93, 236–254 (2007)CrossRefGoogle Scholar
  22. Gao, B., Saiers, J., Ryan, J.: Deposition and mobilization of clay colloids in unsaturated porous media. Water Resour. Res. 40, W08602 (2004)Google Scholar
  23. Giuseppe, M., Guerra, G.: Understanding at molecular level of nanoporous and cocrystalline materials based on syndiotactic polystyrene. Prog. Mater. Sci. 54(1), 68–88 (2009)CrossRefGoogle Scholar
  24. Gregory, J.: Approximate expressions for retarded van der waals interaction. Colloid Interface Sci. 83, 138–145 (1981)CrossRefGoogle Scholar
  25. Grolimund, D., Borkovec, M.: Long term release kinetics of colloidal particles from natural porous media. Environ. Sci. Technol. 33, 4054–4060 (1999)CrossRefGoogle Scholar
  26. Grolimund, D., Borkovec, M.: Release of colloidal particles in natural porous media by monovalent and divalent cations. J. Contam. Hydrol. 87, 155–175 (2006)CrossRefGoogle Scholar
  27. Grolimund, D., Barmettle, K., Borkovec, M.: Colloid facilitated transport in natural porous media: fundamental phenomena and modelling. J. Colloid. Transp. Porous Med. XII, 292 (2007)Google Scholar
  28. Harmand, B., Rodier, E., Sardin, M., Dodds, J.: Transport and capture of submicron particles in a natural sand: short column experiments and a linear model. Colloids Surf. A Physicochem. Eng. Asp. 107, 233–244 (1996)CrossRefGoogle Scholar
  29. Herzig, P.J., Leclerc, D., Goff, PLe: Flow of suspensions through porous media. Application to deep filtration. Ind. Eng. Chem. 62(5), 8–35 (1970)CrossRefGoogle Scholar
  30. Hiemenz, P., Rajagopalan, R.: Principles of Colloid and Surface Chemistry, 3rd edn. Marcel Decker Inc., New York (1997)Google Scholar
  31. Hofmann, T., Baumann, T., Bundschuh, T., Kammer, F., Leis, A., Schmitt, D., et al.: Aquatic colloids 1: Definition and relevance a review. Grundwasser 8(4), 203–210 (2003)CrossRefGoogle Scholar
  32. Hogg, R., Healy, T., Fuersten, D.: Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62(522), 1638–1651 (1966)CrossRefGoogle Scholar
  33. Hong, S., Elimelech, M.: Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 132(2), 159–181 (1997)CrossRefGoogle Scholar
  34. Johnson, R.P., Elimelech, M.: Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11, 801–812 (1995)CrossRefGoogle Scholar
  35. Khilar, K.C., Fogler, H.S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, London (1998)CrossRefGoogle Scholar
  36. Khilar, K.C., Fogler, H.S.: The existence of critical salt concentration for particle release. J. Colloid Interface Sci. 101(1), 214–224 (1984)CrossRefGoogle Scholar
  37. Ko, C.H., Subir, B.: Coupled influence of colloidal and hydrodynamic interactions on the RSA dynamic blocking function for particle deposition onto spherical collectors. J. Colloid Interface Sci. 229, 554 (2000)CrossRefGoogle Scholar
  38. Kolawoski, J.E., Matijevic, E.: Particle adhesion and removal in model systems: part I. Monodispersed chromium hydroxide on glass. J. Chem. Soc. Faraday Trans. 75(1), 65–78 (1979)CrossRefGoogle Scholar
  39. Kretzchmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile surface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)CrossRefGoogle Scholar
  40. Kretzschmar, R., Barmettle, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H.: Experimental determination of colloid depositionrates and collision efficiencies in natural porous media. Water Resour. Res. 33(5), 1129–1137 (1997)CrossRefGoogle Scholar
  41. Kuznar, Z., Elimelech, M.: Direct microscopic osbservation of particle deposition in porous media. Colloid Surf. 294(1–3), 156–162 (2007)CrossRefGoogle Scholar
  42. Lenhart, J.J., Saiers, J.E.: Collloid mobilization in water saturated porous media under transient chemical condition. Environ. Sci. Technol. 37(12), 2780–2787 (2003)CrossRefGoogle Scholar
  43. Li, X., Zhang, P., Lin, C., Johnson, W.: Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Environ. Sci. Technol. 39, 4012–4020 (2005)CrossRefGoogle Scholar
  44. Lyklema, J.: Fundamentals of Interface and Colloid Science (Solid–Liquid Interfaces), vol. 2. Academic Press, London (1995)Google Scholar
  45. McDowell-Boyer, L.M.: Chemical mobilization of micron sized particles in saturated porous media under steady flow conditions. Environ. Sci. Technol. 26(3), 586–593 (1992)CrossRefGoogle Scholar
  46. Mcdowell-Boyer, L., Hunt, J., Itar, N.: Particle transport through porous media. Water Resour. Res. 22(13), 1901–1921 (1986)CrossRefGoogle Scholar
  47. McGechan, M.B., Lewis, D.R.: Transport of particulate and colloid sorbed contaminants through soil, Part 1: general principles. Biosyst. Eng. 83(3), 255–273 (2002)CrossRefGoogle Scholar
  48. McNaught, D., Wilkinson, A.: IUPAC Compendium of Chemical Terminology, 2nd edn. Blackwell Science, Oxford (1997)Google Scholar
  49. Nowack, B., Bucheli, T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)CrossRefGoogle Scholar
  50. Redman, J., Walker, S., Elimelech, M.: Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38, 1777–1785 (2004)CrossRefGoogle Scholar
  51. Roy, S.B., Dzombak, D.A.: Colloid release and transport processes in natural and porous media. Colloids Surf. A Physicochem. Eng. Asp. 107, 245–262 (1996)CrossRefGoogle Scholar
  52. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A Physicochem. Eng. Asp. 107, 1–56 (1996)CrossRefGoogle Scholar
  53. Ryan, J.N., Gschwend, P.M.: Effect of solution chemistry on clay colloid release from an iron oxide coated aquifer sand. Environ. Sci. Technol. 28(9), 1717–1726 (1994)CrossRefGoogle Scholar
  54. Ryan, J.N., Gschwend, P.M.: Effect of ionic strength and flow rate on colloid detachment kinetics. Dependance on intersurface potential energy. J. Colloid Interface Sci. 164, 21–34 (1994)CrossRefGoogle Scholar
  55. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. J. Colloids Surf. A Physicochem. Eng. Asp. 107, 1–56 (1996)CrossRefGoogle Scholar
  56. Saiers, J.E., Hornberger, G.M.: First and second order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour. Res. 30(9), 2499 (1994)CrossRefGoogle Scholar
  57. Saiers, J.E., Ryan, J.N.: Introduction to special section on Colloid Transport in Subsurface Environments. Water Resour. Res. 42(12), W12S01 (2006)Google Scholar
  58. Tiraferri, A., Tosco, T., Sethi, A.: Transport and retention of micro particles in packed sand columns at low and intermediate ionic strengths experiments and mathematical modeling. Environ. Earth Sci. 63(4), 847–859 (2011)CrossRefGoogle Scholar
  59. Tosco, T., Tiraferri, A., Sethi, A.: Ionic strength transport of micro particles in saturated porous media: modeling mobilization and immobilization phenomena under transient chemical conditions. Environ. Sci. Technol. 43(12), 4425–4431 (2009)CrossRefGoogle Scholar
  60. Tufenkji, N.: Modeling microbial transport in porous media: traditional approaches and recent developments. Langmuir 30(6–7), 1455–1469 (2007)Google Scholar
  61. Tufenkji, N., Elimelech, M.: Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20, 10818–10828 (2004)CrossRefGoogle Scholar
  62. Tufenkji, N., Elimelech, M.: Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21, 841–852 (2005)CrossRefGoogle Scholar
  63. Tufenkji, N., Redman, J.A., Elimelech, M.: Deposition patterns of microbial particles in laboratory scale column experiments. Environ. Sci. Technol. 37(3), 616–623 (2003)CrossRefGoogle Scholar
  64. Van der Lee, J., Ledoux, E., De Marsily, G., De Cayeux, M., Van der Weerd, H., Fraters, B., Doods, J., Rodier, E., Sardin, M., Hernandez, A.: A Bibliographical Review of Colloid Transport Through the Geosphere. Nuclear Science and Technology. European Commission, Brussels (1994)Google Scholar
  65. Vardoulakis, I.: Fluidization in artesian flow conditions: hydro mechanically unstable granular media. Géotechnique 54(3), 165–177 (2004)CrossRefGoogle Scholar
  66. Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company, Inc., Amsterdam (1948)Google Scholar
  67. Wang, H.Q., Lacroix, M., Masséi, N., Dupont, J.P.: Particle transport in a porous medium: determination of hydrodispersive characteristics and deposition rates. Surf. Geosci. 331(2), 97–104 (2000)Google Scholar
  68. William, P.J., Li, X., Assemi, S.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30(6–7), 1432–1454 (2007)Google Scholar
  69. Yang, X., Flynn, R., Von Der Kammer, F., Hofmann, T.: Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid. Environ. Pollut. 159, 1896–1904 (2011)CrossRefGoogle Scholar
  70. Yao, K., Habibian, M., O’Melia, C.: Water and waste water filtration: concepts and applications. Environ. Sci. Technol. 5, 1105–1112 (1971)CrossRefGoogle Scholar
  71. Zamani, A., Maini, B.: Flow of dispersed particles through porous media—deep bed filtration. J. Pet. Sci. Eng. 69, 71–88 (2009)CrossRefGoogle Scholar
  72. Zevi, Y., Dathe, A., Gao, B., Zhang, W., Richards, B.K., Steenhuis, T.S.: ransport and retention of colloidal particles in partially saturated porous media: effect of ionic strength. Water Resour. Res. 45, W12403 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratoire de Tribologie et Dynamique des Systèmes UMR 5.65 rue Jean Parrot, Ecole Nationale d’Ingénieurs de Saint-EtienneUniversité de LyonSaint Etienne France

Personalised recommendations