Transport in Porous Media

, Volume 101, Issue 3, pp 507–532 | Cite as

Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes

  • L. Luquot
  • O. Rodriguez
  • P. Gouze


Limestone dissolution by \(\hbox {CO}_2\)-rich brine induces critical changes of the pore network geometrical parameters such as the pore size distribution, the connectivity, and the tortuosity which govern the macroscopic transport properties (permeability and dispersivity) that are required to parameterize the models, simulating the injection and the fate of \(\hbox {CO}_2\). A set of four reactive core-flood experiments reproducing underground conditions (\(T = 100\,^{\circ }\hbox {C}\) and \(P = 12\) MPa) has been conducted for different \(\hbox {CO}_2\) partial pressures \((0.034 < P_{\mathrm{CO}_2}< 3.4\; \hbox {MPa})\) in order to study the different dissolution regimes. X-ray microtomographic images have been used to characterize the changes in the structural properties from pore scale to Darcy scale, while time-resolved pressure loss and chemical fluxes enabled the determination of the sample-scale change in porosity and permeability. The results show the growth of localized dissolution features associated with high permeability increase for the highest \(P_{\mathrm{CO}_2}\), whereas dissolution tends to be more homogeneously distributed for lower values of \(P_{\mathrm{CO}_2}\). For the latter, the higher the \(P_{\mathrm{CO}_2}\), the more the dissolution patterns display ramified structures and permeability increase. For the lowest value of \(P_{\mathrm{CO}_2}\), the preferential dissolution of the calcite cement associated with the low dissolution kinetics triggers the transport that may locally accumulate and form a microporous material that alters permeability and produces an anti-correlated porosity–permeability relationship. The combined analysis of the pore network geometry and the macroscopic measurements shows that \(P_{\mathrm{CO}_2}\) regulates the tortuosity change during dissolution. Conversely, the increase of the exponent value of the observed power law permeability–porosity trend while \(P_{\mathrm{CO}_2}\) increases, which appears to be strongly linked to the increase of the effective hydraulic diameter, depends on the initial rock structure.


Structural heterogeneities \(\hbox {CO}_2\) storage Permeability–porosity relationships 



This work was supported by TOTAL S.A. and by the PANACEA project (European Community FP7/2007-2013, ENERGY.2011.5.2-1 under grant agreement no. 282900). We would like to thank Dimitri Laurent for contribution in the course of his Master Degree and Paul Tafforeau and Elodie Boller from ESRF for their precious help during the XMT acquisition.

Supplementary material

11242_2013_257_MOESM1_ESM.pdf (964 kb)
Supplementary material 1 (pdf 964 KB)


  1. Archie, G.E.: Classification of carbonate reservoir rocks and petrophysical considerations. AAPG Bull. 36, 278–298 (1952)Google Scholar
  2. Bachu, S., Adams, J.: Sequestration of CO\(_2\) in geological media in response to climate change: capacity of deep saline aaquifers to sequester CO\(_2\) solution. Energy Convers. Manag. 44, 3157–3175 (2003)CrossRefGoogle Scholar
  3. Battiato, I., Tartakovsky, D.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contami. Hydrol. 120–121, 18–26 (2011). doi: 10.1016/j.jconhyd.2010.05.005 CrossRefGoogle Scholar
  4. Bear, J.: Dynamics of Fluid in Porous Media. Dover, New York (1988)Google Scholar
  5. Ben Clennell, M.: Tortuosity: a guide through the maze. Dev. Petrophys. Geol. Soc. Lond. Special Publ. 122, 299–344 (1997)CrossRefGoogle Scholar
  6. Bernabe, Y., Brace, W., Evans, B.: Permeability, porosity and pore geometry of hot-pressed calcite. Mech. Mater. 1, 173–183 (1982). doi: 10.1016/0167-6636(82)90010-2 CrossRefGoogle Scholar
  7. Blum, H.: A transformation for extracting New descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967).
  8. Carman, P.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150 (1937)Google Scholar
  9. Daccord, G., Lenormand, R., Litard, O.: Chemical dissolution of a porous medium by a reactive fluid-I. Model for the “wormholing” phenomenon. Chem. Eng. Sci. 48(1), 169–178 (1993)CrossRefGoogle Scholar
  10. de Marsily, G.: Hydrogeologie Quantitative. Masson, Rio de Janeiro (1981)Google Scholar
  11. Dentz, M., Gouze, P., Russian, A., Dweik, J., Delay, F.: Diffusion and trapping in heterogeneous media: an inhomogeneous continuous time random walk approach. Adv. Water Resour. 49, 13–20 (2012)CrossRefGoogle Scholar
  12. Dullien, F.: Porous Media: Fluid Transport and Pore Structure. Academic Press, San Diego (1992)Google Scholar
  13. Epstein, N.: On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44, 777–779 (1989)CrossRefGoogle Scholar
  14. Flannery, B.P., Deckman, H.W., Roberge, W.G., Dámico, K.L.: Three-dimensional X-ray microtomography. Science 237, 1439–1444 (1987)CrossRefGoogle Scholar
  15. Focke, J., Munn, D.: Cementation exponents in Middle Eastern carbonate reservoir. Soc. Petrol. Eng. Form. Evaluation 2, 155–167 (1987)Google Scholar
  16. Fredd, C.N., Fogler, H.S.: Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44(9), 1933–1949 (1998)CrossRefGoogle Scholar
  17. Glassley, W.E., Simmons, A.M., Kercher, J.R.: Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models. Appl. Geochem. 17(6), 699–708 (2002)CrossRefGoogle Scholar
  18. Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)CrossRefGoogle Scholar
  19. Gouze, P., Luquot, L.: X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. J. Contam. Hydrol. 120–121(C), 44–55 (2011)Google Scholar
  20. Hoefner, M.L., Fogler, H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34(1), 45–54 (1988)CrossRefGoogle Scholar
  21. Holloway, S.: An overview of the undergunder disposal of carbon dioxide. Energy Convers. Manag. 38, 193–198 (1997)CrossRefGoogle Scholar
  22. Hoshen, J., Kopelman, R.: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B 14(8), 3438–3445 (1976). doi: 10.1103/PhysRevB.14.3438 CrossRefGoogle Scholar
  23. ISRM: Suggested methods for determing water content, porosity, density, absorption and related properties and swelling and slake durability index properties, in rock characterization, testing and monitoring. Tech. rep., International Society for Rock Mechanics (1979)Google Scholar
  24. Jamtveit, B., Yardley, B.: Fluid Flow and Transport in Rocks: Mechanisms and Effects. Chapman and Hall, London (1997)Google Scholar
  25. Kozeny, J.: Über die kapillare leitung des wassers im boden. Sitz. Ber. Akad. Wiss. Wien, Math. Nat. 136, 271–306 (1927)Google Scholar
  26. Lasaga, A.: Kinetic Theory in the Earth Sciences. Princeton Series in Geochemistry. Princeton University Press, Princeton (1998)Google Scholar
  27. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994). doi: 10.1006/cgip.1994.1042 Google Scholar
  28. Lichtner, P., Steefel, C., Oelkers, E.H.: Reactive Transport in Porous Media. Mineralogical Society of America, Washington, DC (1997)Google Scholar
  29. Lindquist, W.B., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A 24(7), 593–599 (1999). doi: 10.1016/S1464-1895(99)00085-X CrossRefGoogle Scholar
  30. Luquot, L., Gouze, P.: Experimental determination of porosity and permeability changes induced by injection of CO\(_2\) into carbonate rocks. Chem. Geol. 265(1–2), 148–159 (2009)CrossRefGoogle Scholar
  31. Luquot, L., Andreani, M., Gouze, P., Camps, P.: CO\(_2\) percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation—Otway Basin-Australia). Chem. Geol. 294–295, 75–88 (2012). (Cited By (since 1996):3)Google Scholar
  32. Madonna, C., Almqvist, B.S., Saenger, E.H.: Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophys. J. Int. 189(3), 1475–1482 (2012). doi: 10.1111/j.1365-246X.2012.05437.x., Accessed 31 Oct 2013
  33. Mangane, P.O., Gouze, L., Gouze, P., Luquot, L.: Permeability impairment of a limestone reservoir triggered by heterogeneous dissolution and particle migration during CO\(_2\)-rich injection. Geophys. Res. Lett. 40(17), 4614–4619 (2013) doi: 10.1002/grl.50595.
  34. Mavko, G., Nur, A.: The effect of a percolation threshold in the Kozeny–Carman relation. Geophysics 62, 1480–1482 (1997)CrossRefGoogle Scholar
  35. Meijster, A., Roerdink, J.B., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. Math. Morphol. Appl. Image Signal Process 18, 331–340 (2002)Google Scholar
  36. Meile, C., Tuncay, K.: Scale dependence of reaction rates in porous media. Adv. Water Resour. 29(1), 62–71 (2006)CrossRefGoogle Scholar
  37. Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48(3) (2012). doi: 10.1029/2011WR011404
  38. Montenato, C., Guery, F.,Berthou, P.: In: Proceeding of the Ocean Drilling Program 103 (1988)Google Scholar
  39. Mougenot, D., Monteiro, J., Dupeuble, P., Malod, J.: La marge continentale sud -portugaise: évolution structurale et sédimentaire. Ciencias da Terra 5, 223–246 (1979)Google Scholar
  40. Noiriel, C., Gouze, P., Bernard, D.: Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophysical. Res. Lett. 31(24), 1–4 (2004)CrossRefGoogle Scholar
  41. Noiriel, C., Luquot, L., Mad, B., Raimbault, L., Gouze, P., van der Lee, J.: Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem. Geol. 265(1—-2), 160–170 (2009)CrossRefGoogle Scholar
  42. Palain, C.: Une srie dtritique terrigne. les grs de silves: Trias et lias infrieur du portugal. Tech. rep., Servicio Geologico Portugal (1979)Google Scholar
  43. Pape, H., Clauser, C., Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64(5), 1447–1460 (1999)CrossRefGoogle Scholar
  44. Parkhurst, D.L., Appelo, C.A.J.: User guide to phreeqc (version2). A computer program for speciation, batch-reaction, one-dimensional, transport. 99–4259 (1999)Google Scholar
  45. Qajar, J., Francois, N., Arns, C.H.: Micro-tomographic characterization of dissolution-induced local porosity changes including fines migration in carbonate rock. Soc. Petrol. Eng. 1, 117–134 (2012)Google Scholar
  46. Rege, S.D., Fogler, H.S.: Network model for straining dominated particle entrapment in porous media. Chem. Eng. Sci. 42(7), 1553–1564 (1987)CrossRefGoogle Scholar
  47. Renard, F., Gratier, J.P., Ortoleva, P., Brosse, E., Bazin, B.: Self-organization during reactive fluid flow in a porous medium. Geophys. Res. Lett. 25(3), 385–388 (1998)CrossRefGoogle Scholar
  48. Robinson, R., Stokes, R.H.: Elctrolyte solutions: The Measurement and Interpretation of Condutance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes. Butterworths, London (1959)Google Scholar
  49. Schechter, R., Gidley, J.: The change in pore size distribution from surface reaction in porous media. AIChE J. 15, 339–350 (1969)CrossRefGoogle Scholar
  50. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, 1st edn. Springer, Berlin (2008)CrossRefGoogle Scholar
  51. Spirkovska, L.: A summary of image segmentation techniques: Nasa technical memorandum. Tech. rep., NASA, California USA (1993)., Accessed 17 July 2013
  52. Steefel, C., Lasaga, A.: Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: Melchior, D., Bassett, R.L. (eds.) Chemical Modeling of Aqueous Systems II. American Chemical Society, Washington, DC (1990)Google Scholar
  53. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, Berlin (2002)CrossRefGoogle Scholar
  54. Verwer, K., Eberli, G., Weger, R.: Effects of pore structure on electrical resistivity in carbonates. AAPG Bull. 95–2, 175–190 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Géosciences MontpellierUniversité Montpellier 2 - CNRSMontpellier Cedex 5France
  2. 2.IDAEA, CSICBarcelonaSpain
  3. 3.Voxaya, Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations