Advertisement

Transport in Porous Media

, Volume 98, Issue 3, pp 589–613 | Cite as

Identification of the Liquid and Vapour Transport Parameters of an Ecological Building Material in Its Early Stages

  • A. Zaknoune
  • P. GlouannecEmail author
  • P. Salagnac
Article

Abstract

To fulfil the requirements of the new environmental standards in the building sector, increased use of materials containing vegetable particles (hemp) is expected. The manufacturing process of these materials has not yet reached the industrial stage which requires control of the drying process. The objective of this work is to study the various mechanisms of heat and mass transfers occurring during the drying of lime–hemp materials. A macroscopic model has been developed and solved numerically. In order to obtain the moisture transport coefficients, an optimization algorithm was used, allowing the estimation of parameter values by minimising an error criterion between simulated and experimental observations.

Keywords

Heat and mass transfer Porous media Hemp material Inverse techniques Drying kinetics 

List of Symbols

Variables

\(a_{_\mathrm{W}}\)

Water activity

\(C_{p}\)

Specific heat at constant pressure (J kg\(^{-1}\) K\(^{-1}\))

\(D\)

Diffusion coefficient (kg m\(^{-1}\) s\(^{-1}\))

\(e\)

Thickness (cm)

\(F_\mathrm{m}\)

Mass flux (kg m\(^{-2}\) s\(^{-1}\))

\(H_\mathrm{r}\)

Relative humidity (%)

\(h_\mathrm{c}\)

Convection heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

\(h_\mathrm{r}\)

Radiation heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

\(K\)

Volumetric rate of the change phase (kg m\(^{-3}\) s\(^{-1}\))

\(k\)

Intrinsic permeability (m\(^{2}\))

\(k_\mathrm{m}\)

Mass transfer coefficient (m s\(^{-1}\))

\(k_\mathrm{{rg}}\)

Relative permeability to the vapour phase

\(k_\mathrm{{rl}}\)

Relative permeability to the liquid phase

\(m\)

Mass (kg)

\(M\)

Molar mass (kg mol\(^{-1}\))

\(P\)

Pressure (Pa)

\(P_\mathrm{c}\)

Capillary pressure (Pa)

\(P_{\mathrm{v}\infty }\)

Partial atmospheric pressure (Pa)

\(P_\mathrm{{vsat}}\)

Saturation vapour pressure (Pa)

\(R\)

Perfect gas constant (J mol\(^{-1}\) K\(^{-1}\))

\(T\)

Temperature (\(^\circ \)C)

\(t\)

Time (s)

\(V\)

Velocity (m s\(^{-1}\))

\(v\)

Filtration velocity (m s\(^{-1}\))

\(W\)

Moisture content (dry basis) (kg kg\(^{-1}\))

\(x\)

Coordinate (m)

Greek Letters

\(\Delta H_\mathrm{v}\)

Latent vaporisation heat (J kg\(^{-1}\))

\(\varepsilon \)

Porosity

\(\lambda ^{*}\)

Effective thermal conductivity (W m\(^{-1}\) K\(^{-1}\))

\(\mu \)

Tortuosity factor

\(\mu _\mathrm{l}\)

Water dynamic viscosity (Pa s)

\(\rho \)

Density (kg m\(^{-3}\))

Exponents and Subscripts

a

Air

eq

Equivalent

atm

Atmospheric

av

Average

exp

Experiment

f

Film

g

Gas

ini

Initial

l

Liquid

m

Monolayer sorption

r

Relative

s

Solid

sat

Saturation

sim

Simulation

surf

Surface

v

Vapour

\(\infty \)

Equilibrium state

Notes

Acknowledgments

The authors want to thank the Brittany Regional Council, the General council of Morbihan and the National Research Agency of France (ANR) for their financial contributions.

References

  1. Bakhshi, M., Mobasher, B., Soranakom, C.: Moisture loss characteristics of cement-based materials under early-age drying and shrinkage conditions. Constr. Build. Mater. 30, 413–425 (2012)CrossRefGoogle Scholar
  2. Bouloc, P. : Le chanvre industriel. Ouvrage collectif Paris, édition France Agricole (2006)Google Scholar
  3. Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Hydrology Paper 3. Colorado State University, Fort Collin (1964)Google Scholar
  4. Coles, C., Murio, D.: Parameter estimation for a drying system in a porous medium. Int. J. Comput. Math. Appl. 51, 1519–1528 (2006)CrossRefGoogle Scholar
  5. Colinart, T., Glouannec, P., Chauvelon, P.: Influence of the setting process and the formulation on the drying of hemp concrete. Constr. Build. Mater. 30, 372–380 (2012)CrossRefGoogle Scholar
  6. Collet, F., Bart, M., Serres, L., Miriel, J.: Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 22–6, 1271–1280 (2008)CrossRefGoogle Scholar
  7. Couture, F., Jomaa, W., Puiggali, J.R.: Relative permeability relations: a key factor for a drying model. Transp. Porous Media 23–3, 303–335 (1996)Google Scholar
  8. Dantas, L.B., Orlande, H.R.B., Cotta, R.M.: Estimation of dimensionless parameters of Luikov’s system for heat and mass transfer in capillary porous media. Int. J. Therm. Sci. 41, 217–227 (2002)CrossRefGoogle Scholar
  9. Dantas, L.B., Orlande, H.R.B., Cotta, R.M.: An inverse problem of parameter estimation for heat and mass transfer in capillary porous media. Int. J. Heat Mass Transf. 46, 1587–1598 (2003)CrossRefGoogle Scholar
  10. Defraeye, T., Blocken, B., Carmeliet, J.: Influence on uncertainty in heat–moisture transport properties on convective drying of porous materials by numerical modelling. Chem. Eng. Res. Des. (2012). doi: 10.1016/i.cherd.2012.06.011
  11. Dietl, C., Winter, E., Viskanta, R.: An efficient simulation of heat and mass transfer processes during drying of capillary porous hygroscopic materials. Int. J. Heat Mass Transf. 41, 3611–3625 (1998)CrossRefGoogle Scholar
  12. Edgar, T.F., Himmelblau, D.M.: Optimization of Chemical Processes, Mc Graw-Hill International Editions, Mc Graw-Hill, New York (2001)Google Scholar
  13. Evrard, A.: Transient hygrothermal behaviour of lime–hemp materials. PhD Thesis in Applied Science, Université Catholique de Louvain, Belgique (2008)Google Scholar
  14. Glouannec, P., Lecharpentier, D., Noël, H.: Experimental survey on the combination of radiating infrared and microwave sources for the drying of porous material. Appl. Therm. Eng. 22, 1689–1703 (2002)CrossRefGoogle Scholar
  15. Haouas, A.: Comportement au jeune âge des matériaux cimentaires—Caractérisation et modélisation Chimio-Hydro-Mécanique du retrait. Thèse de doctorat, Ecole Normale Supérieure, Cachan (2007)Google Scholar
  16. Huang, C.H., Yeh, C.Y.: An inverse problem in simultaneous estimating the Biot number of heat and mass transfer for a porous material. Int. J. Heat Mass Transf. 45, 4643–4653 (2002)CrossRefGoogle Scholar
  17. Kellenberger, D., Althaus, H.J., Kunniger, T., Jungbluth, N.: Life cycle inventories of building products. Ecoinvent Report No 7, Dübendorf, Dec (2003)Google Scholar
  18. Ketelaars, A., Pel, L., Coumans, W., Kerkhof, P.: Drying kinetics: a comparison of diffusion coefficients from moisture concentration profiles and drying curves. Chem. Eng. Sci. 50, 1187–1191 (1995)CrossRefGoogle Scholar
  19. Kreith, F.: Inverse Engineering Handbook. Keith A. Woodbury Edition, The Mechanical Engineering Handbook Series. Routledge, London (2003)Google Scholar
  20. Lawrence, R.M.H., Mays, T.J., Walker, P., D’ayala, D.: Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim. acta. 444, 179–189 (2006)CrossRefGoogle Scholar
  21. Marinos-Kouris, D., Maroulis, Z.B.: Transport Properties in the Drying of Solids, Handbook of Industrial Drying, 3rd edn. Arun S, Mujundar Edition. Marcel Dekker, New York (2006)Google Scholar
  22. Monge, J., Lamour, V., Moranville, M., Gilliot, C.: Early age cracking of a thin mortar layer: coupling between hydration and drying phenomena. In: ECCOMAS Thematic Conference on Multi-Scale Computational Methods for Solids and Fluids, Cachan (2007)Google Scholar
  23. Obeid, W., Alliche, A., Mounajed, G.: Identification of the physical parameters used in the thermo-hygro-mechanical model (application in the case of cement mortar). Transp. Porous Media 45, 215–239 (2001)CrossRefGoogle Scholar
  24. Olek, W., Weres, J.: Effects of the method of identification of the diffusion coefficient on accuracy of modelling bound water transfer in wood. Transp. Porous Media 66, 135–144 (2007)CrossRefGoogle Scholar
  25. Salagnac, P., Glouannec, P., Lecharpentier, D.: Numerical modelling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying. Int. J. Heat Mass Transf. 47(19–20), 4479–4489 (2004)CrossRefGoogle Scholar
  26. Salem, H.S., Chilingarian, G.V.: Influence of porosity and direction of flow on tortuosity in unconsolidated porous media. Energy Sources 22, 207–213 (2000)CrossRefGoogle Scholar
  27. Scheffler, G.A., Plagge, R.: A whole range hygric material model: modelling liquid and vapour transport properties in porous media. Int. J. Heat Mass Transf. 53, 286–296 (2010)CrossRefGoogle Scholar
  28. Vervoort, R.W., Cattle, S.R.: Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. J. Hydrol. 272, 39–49 (2003)CrossRefGoogle Scholar
  29. Weres, J., Olek, W.: Inverse finite element analysis to technological processes of heat and mass transport in agricultural and forest products. Dry. Technol. 23–8, 1737–1750 (2005)CrossRefGoogle Scholar
  30. Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv. Heat Transf. 54, 13.119-13.203 (1977)Google Scholar
  31. Zaknoune, A., Chauvelon, P., Glouannec, P., Salagnac, P., Collet, F.: Experimental study of hemp concrete block drying. In: A. S. Mujumdar (Series ed.) 16th International Drying Symposium, B., Versailles, pp. 894–900 (2008)Google Scholar
  32. Zaknoune, A., Glouannec, P., Salagnac, P.: Estimation of moisture transport coefficients in porous material using experimental drying kinetics. Heat Mass Transf. 48, 205–215 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des MATériaux de Bretagne (LIMATB), Centre de RechercheUniversité de Bretagne SudLorient CedexFrance
  2. 2.Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Pôle Sciences et TechnologieUniversité de La RochelleLa Rochelle Cedex 1France

Personalised recommendations