Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Extension of the Darcy–Forchheimer Law for Shear-Thinning Fluids and Validation via Pore-Scale Flow Simulations

Abstract

Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food, as well as petroleum and groundwater engineering, and in many other industrial applications. Under the majority of operating conditions typically explored, the dependence of pressure drops on flow rate is non-linear and the development of models capable of describing accurately this dependence, in conjunction with non-trivial rheological behaviors, is of paramount importance. In this work, pore-scale single-phase flow simulations conducted on synthetic two-dimensional porous media are performed via computational fluid dynamics for both Newtonian and non-Newtonian fluids and the results are used for the extension and validation of the Darcy–Forchheimer law, herein proposed for shear-thinning fluid models of Cross, Ellis and Carreau. The inertial parameter β is demonstrated to be independent of the viscous properties of the fluids. The results of flow simulations show the superposition of two contributions to pressure drops: one, strictly related to the non-Newtonian properties of the fluid, dominates at low Reynolds numbers, while a quadratic one, arising at higher Reynolds numbers, is dependent on the porous medium properties. The use of pore-scale flow simulations on limited portions of the porous medium is here proposed for the determination of the macroscale-averaged parameters (permeability K, inertial coefficient β and shift factor α), which are required for the estimation of pressure drops via the extended Darcy–Forchheimer law. The method can be applied for those fluids which would lead to critical conditions (high pressures for low permeability media and/or high flow rates) in laboratory tests.

This is a preview of subscription content, log in to check access.

References

  1. Auradou H., Boschan A., Chertcoff R., Gabbanelli S., Hulin J.P., Ippolito I.: Enhancement of velocity contrasts by shear-thinning solutions flowing in a rough fracture. J. Non-Newton. Fluid Mech. 153(1), 53–61 (2008)

  2. Balhoff M.T., Thompson K.E.: A macroscopic model for shear-thinning flow in packed beds based on network modeling. Chem. Eng. Sci. 61(2), 698–719 (2006)

  3. Battiato I., Tartakovsky D.M., Tartakovsky A.M., Scheibe T.D.: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34(9), 1140–1150 (2011)

  4. Bear J.: Dynamics of Fluids in Porous Media. Dover Books on Physics and Chemistry. Dover, New York (1988)

  5. Bensaid S., Marchisio D.L., Fino D.: Numerical simulation of soot filtration and combustion within diesel particulate filters. Chem. Eng. Sci. 65(1), 357–363 (2010)

  6. Bensaid S., Marchisio D.L., Fino D., Saracco G., Specchia V.: Modelling of diesel particulate filtration in wall-flow traps. Chem. Eng. J. 154(1–3), 211–218 (2009)

  7. Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids, Fluid Mechanics, vol. 1. Wiley, New York (1977)

  8. Bird R.B., Stewart W.E., Lightfoot E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

  9. Blake F.C.: The resistance of packing to fluid flow. Trans. Am. Inst. Chem. Eng. 14, 415–421 (1922)

  10. Blunt M.J.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. J. Colloid Interface Sci. 6(3), 197–207 (2001)

  11. Burke S.P., Plummer W.B.: Gas flow through packed columns. Ind. Eng. Chem. 20(11), 1196–1200 (1928). doi:10.1021/ie50227a025

  12. Carman P.C.: Fluid flow through granular beds. Chem. Eng. Res. Des. 75(Supplement 1), S32–S48 (1937)

  13. Carreau P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)

  14. Chatzis I., Dullien F.A.L.: Modelling pore structure by 2-D and 3-D networks with application to sandstones. J. Can. Petrol. Technol. 16(1), 97–108 (1977)

  15. Ciriello V., Di Federico V.: Similarity solutions for flow of non-Newtonian fluids in porous media revisited under parameter uncertainty. Adv. Water Res. 43, 38–51 (2012)

  16. Cross M.M.: Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20(5), 417–437 (1965)

  17. Darcy H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (1856)

  18. Delshad, M., Kim, D.H., Magbagbeola, O.A., Huh, C., Pope, G.A., Tarahhom, F.: Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efficiency. In: SPE/DOE Symposium on Improved Oil Recovery, pp. 1051–1065. SPE, Tulsa (2008)

  19. Dybbs, A., Edwards, R.V.: A new look at porous media fluid mechanics. In: Bear, J., Corapcioglu, M.Y. (eds.) Darcy to Turbolent Fundamentals of Transport Phenomena in Porous Media, pp. 199–256. Martinus Nijhoff, Dordrecht (1984)

  20. Forchheimer P.: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45, 1782–1788 (1901)

  21. Forchheimer P.: Hydraulik, 3rd edn. B.G. Teubner, Leipzig (1930)

  22. Geertsma J.: Estimating the coefficient of inertial resistance in fluid flow through porous media. Soc. Pet. Eng. AIME J 14(5), 445–450 (1974)

  23. Ghassemi A., Pak A.: Pore scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann method. Int. J. Numer. Anal. Meth. Geomech. 35(8), 886–901 (2011)

  24. Hassanizadeh S.M., Gray W.G.: High-velocity flow in porous-media. Transp. Porous Media 2(6), 521–531 (1987)

  25. Hayes R.E., Afacan A., Boulanger B., Shenoy A.V.: Modelling the flow of power law fluids in a packed bed using a volume-averaged equation of motion. Transp. Porous Media 23(2), 175–196 (1996). doi:10.1007/bf00178125

  26. Hazlett R.D.: Simulation of capillary-dominated displacements in microtomographic images of reservoir rocks. Transp. Porous Media 20(1–2), 21–35 (1995)

  27. Innocentini M.D.M., Salvini V.R., Pandolfelli V.C., Coury J.R.: Assessment of Forchheimer’s equation to predict the permeability of ceramic foams. J. Am. Ceram. Soc. 82(7), 1945–1948 (1999)

  28. Joekar-Niasar V., Prodanović M., Wildenschild D., Hassanizadeh S.M.: Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resour. Res. 46(6), 18 (2010)

  29. Kalaydjian, F.J.M., Bourbiaux, B.J., Lombard, J.M.: Predicting gas-condensate reservoir performance: how flow parameters are altered when approaching production wells. In: Annual Technical Conference and Exhibition, pp. 355–369. Part Delta, Denver (1996)

  30. Koplik J., Lin C., Vermette M.: Conductivity and permeability from microgeometry. J. Appl. Phys. 56(11), 3127–3131 (1984)

  31. Kozeny J.: Uber Kapillare Leitung des Wasser im Boden. Sitzungsberichte der Akademie der Wissenschaften Wien 136, 106–271 (1927)

  32. Lee S., Ang W.S., Elimelech M.: Fouling of reverse osmosis membranes by hydrophilic organic matter: implications for water reuse. Desalination 187(1–3), 313–321 (2006)

  33. Levy A., Levi-Hevroni D., Sorek S., Ben-Dor G.: Derivation of Forchheimer terms and their verification by application to waves propagation in porous media. Int. J. Multiph. Flow 25(4), 683–704 (1999)

  34. Liang Z.R., Fernandes C.P., Magnani F.S., Philippi P.C.: A reconstruction technique for three-dimensional porous media using image analysis and Fourier transforms. J. Pet. Sci. Eng. 21(3–4), 273–283 (1998)

  35. Liu S., Masliyah J.H.: On non-Newtonian fluid flow in ducts and porous media. Chem. Eng. Sci. 53(6), 1175–1201 (1998)

  36. Liu S., Masliyah J.H.: Non-linear flows in porous media. J. Non-Newton. Fluid Mech. 86(1–2), 229–252 (1999)

  37. Lopez X., Valvatne P.H., Blunt M.J.: Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264(1), 256–265 (2003). doi:10.1016/s0021-9797(03)00310-2

  38. Macini P., Mesini E., Viola R.: Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media. J. Pet. Sci. Eng. 77(3–4), 365–374 (2011)

  39. Mei C.C., Auriault J.L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–664 (1991)

  40. Mostaghimi P., Mahani H.: A quantitative and qualitative comparison of coarse-grid-generation techniques for modeling fluid displacement in heterogeneous porous media. SPE Res. Eval. Eng. 13(1), 24–36 (2010). doi:10.2118/118712-pa

  41. Muskat, M., Wyckoff, R.D.: The flow of homogeneous fluids through porous media, 1st edn. In: International Series in Physics. McGraw-Hill, New York (1937)

  42. Narsilio G.A., Buzzi O., Fityus S., Yun T.S., Smith D.W.: Upscaling of Navier–Stokes equations in porous media: theoretical, numerical and experimental approach. Comp. Geotech. 36(7), 1200–1206 (2009)

  43. Ovaysi S., Piri M.: Pore-scale modeling of dispersion in disordered porous media. J. Contam. Hydrol. 124(1–4), 68–81 (2011)

  44. Pearson J.R.A., Tardy P.M.J.: Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newton. Fluid Mech. 102(2), 447–473 (2002)

  45. Perrin C.L., Tardy P.M.J., Sorbie K.S., Crawshaw J.C.: Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels. J. Colloid Interface Sci. 295(2), 542–550 (2006). doi:10.1016/j.jcis.2005.09.012

  46. Philippi P.C., Souza H.A.: Modelling moisture distribution and isothermal transfer in a heterogeneous porous material. Int. J. Multiph. Flow 21(4), 667–691 (1995)

  47. Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys. Rev. E 71, 2 (2005). doi:02630110.1103/PhysRevE.71.026301

  48. Raoof A., Majid Hassanizadeh S., Leijnse A.: Upscaling transport of adsorbing solutes in porous media: pore-network modeling. Vadose Zone J. 9(3), 624–636 (2010)

  49. Rashidi M.M., Keimanesh M., Bég O.A., Hung T.K.: Magnetohydrodynamic biorheological transport phenomena in a porous medium: a simulation of magnetic blood flow control and filtration. Int. J. Numer. Methods Biomed. Eng. 27(6), 805–821 (2011)

  50. Reiner M.: Deformation, Strain, and Flow: An Elementary Introduction to Rheology, 2nd edn. Interscience Publishers, New York (1960)

  51. Rolle M., Hochstetler D., Chiogna G., Kitanidis P.K., Grathwohl P.: Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media. Transp. Porous Media 93(3), 347–362 (2012)

  52. Seright, R.S., Fan, T., Wavrik, K., Balaban, R.D.C.: New insights into polymer rheology in porous media. In: 17th SPE Improved Oil Recovery Symposium 2010, pp. 130–140. SPE, Tulsa

  53. Sethi R.: A dual-well step drawdown method for the estimation of linear and non-linear flow parameters and wellbore skin factor in confined aquifer systems. J. Hydrol. 400(1–2), 187–194 (2011)

  54. Shenoy A.V.: Darcy–Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. Transp. Porous Media 11(3), 219–241 (1993)

  55. Skjetne E., Auriault J.L.: High-velocity laminar and turbulent flow in porous media. Transp. Porous Media 36(2), 131–147 (1999)

  56. Sochi T.: Pore-scale modeling of viscoelastic flow in porous media using a Bautista–Manero fluid. Int. J. Heat Fluid Flow 30(6), 1202–1217 (2009)

  57. Sorbie, K.S.: Polymer-Improved Oil Recovery. Blackie; CRC Press, Glasgow, Boca Raton (1991)

  58. Sorbie K.S., Clifford P.J., Jones E.R.W.: The rheology of pseaudoplastic fluids in porous media using network modeling. J. Colloid Interface Sci. 130(2), 508–534 (1989)

  59. Taylor K.C., Nasr-El-Din H.A.: Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J. Pet. Sci. Eng. 19(3–4), 265–280 (1998)

  60. Tek M.R.: Development of a Generalized Darcy Equation. J. Pet. Tech. 9(6), 45–47 (1957)

  61. Tosco T., Bosch J., Meckenstock R.U., Sethi R.: Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate. Environ. Sci. Technol. 46(7), 4008–4015 (2012)

  62. Tosco T., Sethi R.: Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach. Environ. Sci. Technol. 44(23), 9062–9068 (2010)

  63. Vecchia E.D., Luna M., Sethi R.: Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environ. Sci. Technol. 43(23), 8942–8947 (2009). doi:10.1021/Es901897d

  64. Vogel H.J.: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models. Eur. J. Soil Sci. 51(1), 99–105 (2000). doi:10.1046/j.1365-2389.2000.00275.x

  65. Zaretskiy Y., Geiger S., Sorbie K., Förster M.: Efficient flow and transport simulations in reconstructed 3D pore geometries. Adv. Water Res. 33(12), 1508–1516 (2010)

  66. Zeinijahromi A., Vaz A., Bedrikovetsky P.: Well impairment by fines migration in gas fields. J. Pet. Sci. Eng. 4, 213–221 (2012)

  67. Zhang D., Zhang R., Chen S., Soll W.E.: Pore scale study of flow in porous media: scale dependency, REV, and statistical REV. Geophys. Res. Lett. 27(8), 1195–1198 (2000)

  68. Zhang Z., Li J., Zhou J.: Microscopic roles of “viscoelasticity” in HPMA polymer flooding for EOR. Transp. Porous Media 86(1), 199–214 (2011). doi:10.1007/s11242-010-9616-6

  69. Zhong L., Szecsody J., Oostrom M., Truex M., Shen X., Li X.: Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. J. Hazard. Mat. 191(1–3), 249–257 (2011)

Download references

Author information

Correspondence to Rajandrea Sethi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tosco, T., Marchisio, D.L., Lince, F. et al. Extension of the Darcy–Forchheimer Law for Shear-Thinning Fluids and Validation via Pore-Scale Flow Simulations. Transp Porous Med 96, 1–20 (2013). https://doi.org/10.1007/s11242-012-0070-5

Download citation

Keywords

  • Darcy–Forchheimer law
  • Shear-thinning fluid
  • Computational fluid dynamics
  • Pore-scale simulations
  • Non-Newtonian flow