Transport in Porous Media

, Volume 95, Issue 2, pp 305–326 | Cite as

Multiblock Pore-Scale Modeling and Upscaling of Reactive Transport: Application to Carbon Sequestration

  • Y. Mehmani
  • T. Sun
  • M. T. Balhoff
  • P. Eichhubl
  • S. Bryant


In order to safely store CO2 in depleted reservoirs and deep saline aquifers, a better understanding of the storage mechanisms of CO2 is needed. Reaction of CO2 with minerals to form precipitate in the subsurface helps to securely store CO2 over geologic time periods, but a concern is the formation of localized channels through which CO2 could travel at large, localized rates. Pore-scale network modeling is an attractive option for modeling and understanding this inherently pore-level process, but the relatively small domains of pore-scale network models may prevent accurate upscaling. Here, we develop a transient, single-phase, reactive pore-network model that includes reduction of throat conductivity as a result of precipitation. The novelty of this study is the implementation of a new mortar/transport method for coupling pore networks together at model interfaces that ensure continuity of pressures, species concentrations, and fluxes. The coupling allows for modeling at larger scales which may lead to more accurate upscaling approaches. Here, we couple pore-scale models with large variation in permeability and porosity which result in initial preferential pathways for flow. Our simulation results suggest that the preferential pathways close due to precipitation, but are not redirected at late times.


Pore-scale modeling Mortar coupling Reactant transport Carbon sequestration Upscaling Multiscale modeling 

List of Symbols


Reaction rate of bicarbonate dissociation (M/L 3 T)


Reaction rate of calcite precipitation (1/T)


Flow rate within pore throat connecting pores i and j (L 3/T)


Radius of pore throat connecting pores i and j (L)


Viscosity (M/LT)


Length of pore throat connecting pores i and j (L)


Pressure of pore i (M/LT 2)


Bicarbonate concentration (M/L 3)

\({{c}_{{\rm H{\rm CO}_{3}}^{-}}^{{\rm eq}}}\)

Bicarbonate concentration at equilibrium (M/L3)


Time (T)


Volume of pore i (L 3)


Calcite density (M/L 3)


Time step (T)


Change in volume of pore i (L 3)


Change in concentration (M/L 3)


Overall flow rate through the domain (L 3/T)


Initial pore volume of entire domain (L3)




Lagrange multiplier of interface basis functions


Jump in interface flux vector


Average projected concentration over a bundle (M/L3)


Darcy velocity (L/T)


Damkohler number, rate of precipitation to rate of convection


Rate of calcite precipitation to rate of bicarbonate dissociation


Dimensionless concentration


Dimensionless time (pore volume throughput = Qt/V p,0)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algive, L., Bekri, S.,Vizika, O.: Reactive pore network modeling dedicated to the determination of the petrophysical property changes while injecting CO2. Presented at the 2009 annual technical conference in New Orleans, Louisiana (2009)Google Scholar
  2. Al-Raoush R., Thompson K.E., Willson C.S.: Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687–1700 (2003)CrossRefGoogle Scholar
  3. Arbogast T., Cowsar L.C., Wheeler M.F., Yotov I.: Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal. 37(4), 1295–1315 (2000)CrossRefGoogle Scholar
  4. Arbogast T., Pencheva G., Wheeler M.F., Yotov I.: A multiscale mortar mixed finite element method. SIAM Multiscale J. 6, 319–346 (2007)CrossRefGoogle Scholar
  5. Bakke S., Oren P.E.: 3-D Pore-scale modelling of sandstones and flow simulations in the pore networks. SPEJ 2(2), 136–149 (1997)CrossRefGoogle Scholar
  6. Balhoff M.T., Wheeler M.F.: A predictive pore scale model of non-darcy flow in porous media. SPEJ 14(4), 579–587 (2009)CrossRefGoogle Scholar
  7. Balhoff M.T., Thomas S.G., Wheeler M.F.: Mortar coupling and upscaling of pore scale models. Comput. Geosci. 12(1), 15–27 (2008)CrossRefGoogle Scholar
  8. Battiato I., Tartakovsky D.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contam. Hydrol. 120(121), 18–26 (2011)CrossRefGoogle Scholar
  9. Battiato I., Tartakovsky D., Tartakovsky A., Scheibe T.: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34, 1140–1150 (2011)CrossRefGoogle Scholar
  10. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.-L. (eds.) Coll‘ege de France Seminar XI, pp. 13–51, Pitman (1994)Google Scholar
  11. Bryant S.L., Mellor D.W., Cade C.A.: Physically representative network models of transport in porous media. AIChE J. 39, 387–396 (1993)CrossRefGoogle Scholar
  12. Burnside, N.M., Dockrill, B., Shipton, Z.K., Ellam, R.M.: Dating and constraining leakage rates from natural analogue for CO2 storage—the little grand wash and salt wash fault. In: 2nd International Conference on Fault and Top Seals—From Pore to Basin Scale, Montpellier, France, 21–24 September 2009, abstract C05 (2009)Google Scholar
  13. Chu, J., Engquist, B., Prodanovic, M., Tsai, R. A Multiscale Method Coupling Network and Continuum Models in Porous Media I - Single Phase Flow. Multiscale Model. Simul. 10, 515–549 (2012)Google Scholar
  14. Dockrill B., Shipton Z.K.: Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U.S.A. J. Struct. Geol. 32, 1768–1782 (2010)CrossRefGoogle Scholar
  15. Eichhubl P., Boles J.R.: Rates of fluid flow in fault systems-evidence for episodic rapid fluid flow in the Miocene Monterey Formation, coastal California. Am. J. Sci. 300, 571–600 (2000)CrossRefGoogle Scholar
  16. Fredd C.N., Fogler H.S.: Influence of transport and reaction on wormhole formation in porous media. AICHE J. 44, 1933–1949 (1998)CrossRefGoogle Scholar
  17. Hoefner M.L., Fogler H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34(1), 45–54 (1988)CrossRefGoogle Scholar
  18. Kechagia P., Tsimpanogianni I., Yortsos Y., Lichtner P.: On the upscaling of reaction-transport processes in porous media with fast or finite kinetics. Chem. Eng. Sci. 57(13), 2565–2577 (2002)CrossRefGoogle Scholar
  19. Kim D., Peters C.A., Lindquist W.B.: Up-scaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers. Water Resour. Res. 47, 1–16 (2011)Google Scholar
  20. Li L., Peters C.A. et al.: Upscaling geochemical reaction rates using pore-scale network modeling. Adv. Water Resour. 29(9), 1351–1370 (2006)CrossRefGoogle Scholar
  21. Lopez X., Valvatne P.H., Blunt M.J.: Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interf. Sci. 264, 256–265 (2003)CrossRefGoogle Scholar
  22. Lu C., Yortsos Y.: Pattern formation in reverse filtration combustion. Phys. Rev. E 51(4), 1279–1296 (2005a)Google Scholar
  23. Lu C., Yortsos Y.: Dynamics of forward filtration combustion at the pore-network level. AICHE J. 51(4), 1279–1296 (2005b)CrossRefGoogle Scholar
  24. Moore J., Adams M., Allis R., Lutz S., Rauzi S.: Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville-St Johns Field, Arizona, and New Mexico, U.S.A. Chem. Geol. 217, 365–385 (2005)CrossRefGoogle Scholar
  25. Pearce, J., Czernichowski-Lauriol, I., Lombardi, S., Brune, S., Nador, A., Baker, J., Pauwels, H., Hatziyannis G., Beaubien, S., Faber, E.: A Review of Natural CO2 Accumulations in Europe as Analogues for Geological Sequestration, vol. 233, pp. 29–41. Geological Society, London, Special Publications (2004)Google Scholar
  26. Peszynska M., Wheeler M.F., Yotov I.: Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6(1), 73–100 (2002)CrossRefGoogle Scholar
  27. Peterson R.T., Balhoff M.T., Bryant S.: Pore-scale modeling of the impact of the impact of surrounding flow behavior on multiphase flow properties. Multiscale Model. 3, 109–131 (2011)CrossRefGoogle Scholar
  28. Scheibe T.D., Tartakovsky A.M., Tartakovsky D.M., Redden G.D., Meakin P.: Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes. J. Phys. Conf. Ser. 78(1), 1–5 (2007)Google Scholar
  29. Sharma M., Yortsos Y.: Application of percolation theory to noncatalytic gas–solid reactions. AICHE J. 32(1), 46–55 (1986)CrossRefGoogle Scholar
  30. Shipton, Z.K., Evans, J.P., Kirschner, D., Kolesar, P.T., Williams, A.P., Heath, J.: Analysis of CO2 leakage Through “Low-Permeability” Faults From Natural Reservoirs in the Colorado Plateau, East-Central Utah, vol. 233, pp. 43–58. Geological Society Special Publications, London (2004)Google Scholar
  31. Sun T., Mehmani Y., Bhagmane J., Balhoff M.T.: Pore to continuum upscaling of permeability in heterogeneous porous media using mortars. Int. J. Oil Gas Coal Technol. 5(2/3), 249–266 (2012a)CrossRefGoogle Scholar
  32. Sun, T., Mehmani, Y., Balhoff, M.T.: Hybrid multiscale modeling through direct substitution of pore-scale models into near-well reservoir simulators. Energy and Fuels (in review) (2012b)Google Scholar
  33. Tartakovsky A.M., Tartakovsky D.M., Scheibe T.D., Meakin P.: Hybrid simulations of reaction–diffusion systems in porous media. SIAM J. Sci. Comput. 30(6), 2799–2816 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Y. Mehmani
    • 1
  • T. Sun
    • 1
  • M. T. Balhoff
    • 1
  • P. Eichhubl
    • 2
  • S. Bryant
    • 1
  1. 1.Department of Petroleum & Geosystems EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Jackson School of Geosciences, Bureau of Economic GeologyThe University of Texas at AustinAustinUSA

Personalised recommendations