Transport in Porous Media

, Volume 94, Issue 1, pp 385–398 | Cite as

Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media

  • A. N. Kalarakis
  • V. K. Michalis
  • E. D. Skouras
  • V. N. Burganos
Article

Abstract

Rarefied gas flow in channels and computer-aided reconstructions of porous media is simulated using the direct simulation Monte Carlo (DSMC) method and a modified lattice-Boltzmann (LB) method that can account for rarefaction effects. An increase of two orders of magnitude was noted for the gas permeability as the Knudsen number increased from 0.1 to 10. It was found that incorporation of a Bosanquet expression for the viscosity in the dusty gas flux equations leads to the recovery of the well known Klinkenberg expression for the gas permeability, revealing an explicit relation of the, thus far empirical, permeability correction factor to the fluid and structure properties. The expression for the effective gas viscosity in the transition flow regime is also incorporated in the LB method, which is then validated against the DSMC method by comparing predictions for the velocity profiles in straight channels over the entire transition flow regime. The new LB method offers the additional advantages of simplicity in the code implementation and great savings in computational time and memory compared to the DSMC method. It is shown that the rough adjustment of a single parameter suffices to make the LB method suitable for the reliable prediction of the gas permeability in porous media over the entire transition flow regime.

Keywords

Rarefaction Porous media Gas permeability Klinkenberg effect Transition flow DSMC Lattice Boltzmann 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander F.J., Garcia A.L.: The direct simulation Monte Carlo method. J. Comput. Phys. 11, 588–593 (1997)CrossRefGoogle Scholar
  2. Ansumali S., Karlin I.V.: Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E 66, 026311 (2002)CrossRefGoogle Scholar
  3. Barber R.W., Emerson D.R.: Challenges in modeling gas-phase flow in microchannels: from slip to transition. Heat. Transf. Eng. 27, 3–12 (2006)CrossRefGoogle Scholar
  4. Beskok A., Karniadakis G.E.: A model for flows in channels, pipes, and ducts at micro and nano scales. Nanoscale Microscale Thermophys. Eng. 3, 43–77 (1999)Google Scholar
  5. Bird G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)Google Scholar
  6. Bravo M.C.: Effect of transition from slip to free molecular flow on gas transport in porous media. J. Appl. Phys. 102, 074905 (2007)CrossRefGoogle Scholar
  7. Burganos V.N.: Gas diffusion in random binary media. J. Chem. Phys. 109, 6772–6779 (1998)CrossRefGoogle Scholar
  8. Cercignagni C.: Theory and Application of the Boltzmann Equation. Scottish Academic, New York (1975)Google Scholar
  9. Colin S., Lalonde P., Caen R.: Validation of a second-order slip flow model in rectangular microchannels. Heat. Transf. Eng. 25, 23–30 (2004)CrossRefGoogle Scholar
  10. de Socio L.M., Marino L.: Gas flow in a permeable medium. J. Fluid Mech. 557, 119–133 (2006)CrossRefGoogle Scholar
  11. Dongari N., Sharma A., Durst F.: Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes. Microfluid. Nanofluid. 6, 679–692 (2009)CrossRefGoogle Scholar
  12. Evans J.W., Abbasi M.H., Sarin A.: A Monte Carlo simulation of the diffusion of gases in porous solids. J. Chem. Phys. 72, 2967–2973 (1980)CrossRefGoogle Scholar
  13. Guo Z., Zhao T.S., Shi Y.: Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J. Appl. Phys. 99, 074903 (2006)CrossRefGoogle Scholar
  14. Guo Z.L., Zheng C.G.: Analysis of lattice Boltzmann equation for microscale gas flows: Relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn. 22, 465–473 (2008)CrossRefGoogle Scholar
  15. Guo Z.L., Zheng C.G., Shi B.C.: Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys. Rev. E 77, 036707 (2008)CrossRefGoogle Scholar
  16. Hadjiconstantinou N.G.: The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 18, 19 (2006)CrossRefGoogle Scholar
  17. Innocentini M.D.M., Pandolfelli V.C.: Permeability of porous ceramics considering the Klinkenberg and inertial effects. J. Am. Ceram. Soc. 84, 941–944 (2001)CrossRefGoogle Scholar
  18. Jones S.C., Aime M.: Rapid accurate unsteady-state Klinkenberg-Permeameter. Soc. Petrol Eng. J. 12, 383–397 (1972)Google Scholar
  19. Karniadakis G., Beskok A., Aluru N.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York (2005)Google Scholar
  20. Kikkinides E.S., Burganos V.N.: Structural and flow properties of binary media generated by fractional Brownian motion models. Phys. Rev. E 59, 7185–7194 (1999)CrossRefGoogle Scholar
  21. Kikkinides E.S., Burganos V.N.: Permeation properties of three-dimensional self-affine reconstructions of porous materials. Phys. Rev. E 62, 6906–6915 (2000)CrossRefGoogle Scholar
  22. Kikkinides E.S., Stoitsas K.A., Zaspalis V.T., Burganos V.N.: Simulation of structural and permeation properties of multi-layer ceramic membranes. J. Membr. Sci. 243, 133–141 (2004)CrossRefGoogle Scholar
  23. Klinkenberg, L.J.: The permeability of porous media to liquids and gases, drilling and production practice. A. Petrol. Inst. 200–213 (1941)Google Scholar
  24. Knudsen M.H.C.: The Kinetic Theory of Gases; Some Modern Aspects. Methuen, London (1933)Google Scholar
  25. Li Q., He Y.L., Tang G.H., Tao W.Q.: Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid. Nanofluid. 10, 607–618 (2011)CrossRefGoogle Scholar
  26. Lim C.Y., Shu C., Niu X.D., Chew Y.T.: Application of lattice Boltzmann method to simulate microchannel flows. Phys. Fluids 14, 2299–2308 (2002)CrossRefGoogle Scholar
  27. Mason E.A., Malinauskas A.P., Evans R.B. III: Flow and diffusion of gases in porous media. J. Chem. Phys. 46, 3199–3216 (1967)CrossRefGoogle Scholar
  28. Maurer J., Tabeling P., Joseph P., Willaime H.: Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids 15, 2613–2621 (2003)CrossRefGoogle Scholar
  29. Michalis V.K., Kalarakis A.N., Skouras E.D., Burganos V.N.: Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluid. 9, 847–853 (2010)CrossRefGoogle Scholar
  30. Nie X.B., Doolen G.D., Chen S.Y.: Lattice-Boltzmann simulations of fluid flows in MEMS. J. Stat. Phys. 107, 279–289 (2002)CrossRefGoogle Scholar
  31. Ohwada T., Sone Y., Aoki K.: Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard sphere molecules. Phys. Fluids A 1, 2042–2049 (1989)CrossRefGoogle Scholar
  32. Present R.D.: Kinetic Theory of Gases. McGraw Hill, New York (1958)Google Scholar
  33. Pollard W.G., Present R.D.: On gaseous self-diffusion in long capillary tubes. Phys. Rev. 73, 762–774 (1948)CrossRefGoogle Scholar
  34. Sakellariou A., Arns C.H., Sheppard A.P., Sok R.M., Averdunk H., Limaye A., Jones A.C., Senden T.J., Knackstedt M.A.: Developing a virtual materials laboratory. Mater. Today 10, 44–51 (2007)CrossRefGoogle Scholar
  35. Sbragaglia M., Succi S.: Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Phys. Fluids 17, 093602 (2005)CrossRefGoogle Scholar
  36. Stops D.W.: Mean free path of gas molecules on transition regime. J. Phys. D Appl. Phys. 3, 685–696 (1970)CrossRefGoogle Scholar
  37. Tang G.H., Tao W.Q., He Y.L.: Lattice Boltzmann method for simulating gas flow in microchannels. Int. J. Mod. Phys. C 15, 335–347 (2004)CrossRefGoogle Scholar
  38. Tang G.H., Tao W.Q., He Y.L.: Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys. Fluids 17, 058101 (2005)CrossRefGoogle Scholar
  39. Wagner W.: A convergence proof for Bird direct simulation Monte-Carlo method for the Boltzmann-equation. J. Stat. Phys. 66, 1011–1044 (1992)CrossRefGoogle Scholar
  40. Wu J.S., Tseng K.C.: Analysis of micro-scale gas flows with pressure boundaries using direct simulation Monte Carlo method. Comput. Fluids 30, 711–735 (2001)CrossRefGoogle Scholar
  41. Zhang Y.H., Qin R.S., Emerson D.R.: Lattice Boltzmann simulation of rarefied gas flows in microchannels. Phys. Rev. E 71, 047702 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. N. Kalarakis
    • 1
  • V. K. Michalis
    • 1
    • 2
  • E. D. Skouras
    • 1
  • V. N. Burganos
    • 1
  1. 1.Institute of Chemical Engineering and High Temperature Chemical ProcessesFoundation for Research and Technology, HellasPatrasGreece
  2. 2.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations