Advertisement

Transport in Porous Media

, Volume 94, Issue 2, pp 487–504 | Cite as

Relative Permeability Calculations from Two-Phase Flow Simulations Directly on Digital Images of Porous Rocks

  • Thomas Ramstad
  • Nasiru Idowu
  • Cyril Nardi
  • Pål-Eric Øren
Article

Abstract

We present results from a systematic study of relative permeability functions derived from two-phase lattice Boltzmann (LB) simulations on X-ray microtomography pore space images of Bentheimer and Berea sandstone. The simulations mimic both unsteady- and steady-state experiments for measuring relative permeability. For steady-state flow, we reproduce drainage and imbibition relative permeability curves that are in good agreement with available experimental steady-state data. Relative permeabilities from unsteady-state displacements are derived by explicit calculations using the Johnson, Bossler and Naumann method with input from simulated production and pressure profiles. We find that the nonwetting phase relative permeability for drainage is over-predicted compared to the steady-state data. This is due to transient dynamic effects causing viscous instabilities. Thus, the calculated unsteady-state relative permeabilities for the drainage is fundamentally different from the steady-state situation where transient effects have vanished. These effects have a larger impact on the invading nonwetting fluid than the defending wetting fluid. Unsteady-state imbibition relative permeabilities are comparable to the steady-state ones. However, the appearance of a piston-like front disguises most of the displacement and data can only be determined for a restricted range of saturations. Relative permeabilities derived from unsteady-state displacements exhibit clear rate effects, and residual saturations depend strongly on the capillary number. We conclude that the LB method can provide a versatile tool to compute multiphase flow properties from pore space images and to explore the effects of imposed flow and fluid conditions on these properties. Also, dynamic effects are properly captured by the method, giving the opportunity to examine differences between steady and unsteady-state setups.

Keywords

Relative permeability Lattice Boltzmann simulations Steady-state Unsteady-state Sandstone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrenholz B., Tölke J., Lehmann P., Peters A., Kaestner A., Krafczyk M., Durner W.: Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Resour. 31, 1151–1173 (2008)CrossRefGoogle Scholar
  2. Arns C.H., Knackstedt M.A., Pinczewski V., Garboczi E.J.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiments. Geophysics 67, 1396–1405 (2002)Google Scholar
  3. Avraam D.G., Payatakes A.C.: Flow mechanisms, relative permeability, and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability. Ind. Eng. Chem. Res. 38, 778–786 (1999)CrossRefGoogle Scholar
  4. Badalassi V., Ceniceros H., Banerjee S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)CrossRefGoogle Scholar
  5. Bardon C., Longeron D.G.: Influence of very low interfacial tensions on relative permeability. SPE J. 20, 391–401 (1980)Google Scholar
  6. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. 1. Small amplitude processes in charges and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRefGoogle Scholar
  7. Craig F.F.: The Reservoir Engineering Aspects of Waterflooding. Society of Petroleum Engineers of AIME, New York (1971)Google Scholar
  8. d’Humières D., Ginzburg I., Krafczyk M., Lallemand P., Li-Shi L.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. A 360, 437–451 (2002)CrossRefGoogle Scholar
  9. Dullien F.A.L.: Porous Media: Fluid Transport and Pore Structure. 2nd edn. Academic Press, New York (1992)Google Scholar
  10. Eleri, O.O., Graue, A., Skauge, A.: Steady-state and unsteady-state two-phase relative permeability hysteresis and measurements of three-phase relative permeabilities using imaging techniques. Paper SPE 30764, presented at the annual SPE conference and exhibition, Dallas, TX, USA (1995)Google Scholar
  11. Gunstensen A.K., Rothman D.H., Zaleski S., Zanetti G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320–4327 (1991)CrossRefGoogle Scholar
  12. Honarpour M., Koederitz L., Harvey A.H.: Relative Permeabilities for Petroleum Reservoirs. CRC Press, Boca Raton (1986)Google Scholar
  13. Idowu N.A., Blunt M.J.: Pore-Scale modelling of rate effects in waterflooding. Transp. Porous Med. 83, 151–169 (2010)CrossRefGoogle Scholar
  14. Inamuro T., Ogata T., Tajima S., Konishi N.: A lattice Boltzmann method for incompressible two-phase flow with large density differences. J. Comput. Phys. 155, 96–127 (2004)Google Scholar
  15. Jiang Z., Wu K., Couples G., van Dijke M.I.J., Sorbie K.S., Ma J.: Efficient extraction of networks from three-dimensional porous media. Water Resour. Res. 43, W12S03 (2007)CrossRefGoogle Scholar
  16. Jin, G., Patzek, T.W., Silin, D.B.: Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rocks. Paper SPE 90084, presented at the annual SPE conference and exhibition, Houston, TX, 26–29 September 2004Google Scholar
  17. Joekar-Niasar V., Hassanizadeh S.M.: Specific interfacial area: the missing state variable in two-phase flow equations?. Water Resour. Res. 47, W05513 (2011)CrossRefGoogle Scholar
  18. Johnson E.F., Bossler D.D., Naumann V.O.: Calculation of relative permeability from displacement experiments. Trans. AIME 216, 370 (1959)Google Scholar
  19. Knackstedt, M.A., Arns, C.H., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sok, R.M., Pinczewski, W.V.: Digital Core Laboratory: properties of reservoir core derived from 3D images. SPE paper 87009, Kuala Lumpur, Malaysia (2004)Google Scholar
  20. Lallemand P., Luo L.A.: Theory of the lattice Boltzmann method: dispersion, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546 (2000)CrossRefGoogle Scholar
  21. Latva-Kokko M., Rothmann D.H.: Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. Phys. Rev. E 71, 056702 (2005)CrossRefGoogle Scholar
  22. Lindquist W.B., Lee S.M., Coker D., Jones K., Spanne P.: Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res. 101, 8297 (1996)CrossRefGoogle Scholar
  23. Marle C.M.: Multiphase Flow in Porous Media. Editions Technip, Paris (1981)Google Scholar
  24. Martys N., Chen H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice-Boltzmann method. Phys. Rev. E 53, 743–750 (1996)CrossRefGoogle Scholar
  25. Mohanty K.K., Miller A.E.: Factors influencing unsteady relative permeability of a mixed-wet reservoir rock. SPE Form. Eval. 6, 349–358 (1991)Google Scholar
  26. Oak, M.J., Baker, L.E., Thomas, D.C.: Three-phase relative permeability of Berea sandstone. JPT August 1990, 1054 (1990)Google Scholar
  27. Øren P.E., Bakke S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46, 311–314 (2002)CrossRefGoogle Scholar
  28. Øren P.E., Bakke S.: Reconstruction of Berea sandstone and pore scale modeling of wettability effects. J. Pet. Sci. Eng. 39, 177–199 (2003)CrossRefGoogle Scholar
  29. Øren P.E., Bakke S., Arntzen O.J.: Extending Predictive Capabilities to Network Models. SPE J. 3, 324–336 (1998)Google Scholar
  30. Øren, P.E., Bakke, S., Rueslåtten, H.G.: Digital core laboratory: rock and flow properties derived from computer generated rocks. In: Proceedings of International Symposium of the Society of Core Analysts, Trondheim, Norway (2006)Google Scholar
  31. Pan C., Hilpert M., Miller C.T.: Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40, W01501 (2004)CrossRefGoogle Scholar
  32. Pan C., Luo L.-S., Miller C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulations. Comput. fluids 35, 898–909 (2006)CrossRefGoogle Scholar
  33. Ramstad T., Hansen A.: Cluster evolution in steady-state two-phase flow in porous media. Phys. Rev. E 73, 026306 (2006)CrossRefGoogle Scholar
  34. Ramstad T., Øren P.-E., Bakke S.: Simulation of two phase flow in reservoir rocks using a lattice Boltzmann method. SPE J. 15(4), 917–927 (2010)Google Scholar
  35. Rothmann D.H., Zaleski S.: Lattice-Gas Cellular Automata. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  36. Schaap M.G., Porter M.L., Christensen B., Wildenschild D.: Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations. Water Resour. Res. 43, W12S06 (2007)CrossRefGoogle Scholar
  37. Shan X., Chen H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)CrossRefGoogle Scholar
  38. Succi S.: The Lattice Boltzmann Equation. Clarendon Press, Oxford (2001)Google Scholar
  39. Succi S., Foti E., Higuera F.: Three dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433 (1989)CrossRefGoogle Scholar
  40. Sukop M.C., Thorne D.T.: Lattice Boltzmann Modeling. An Introduction for Geoscientists and Engineers. Springer, Berlin (2006)Google Scholar
  41. Sussman M., Smereka P., Osher S.: A level set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys. 114, 146–159 (1994)CrossRefGoogle Scholar
  42. Swift M.R., Osborn W.R., Yoemans J.M.: Lattice Boltzmann simulations of non-ideal fluids. Phys. Rev. Lett. 75, 830 (1995)CrossRefGoogle Scholar
  43. Tryggvason G., Sussman M., Hussaini M.Y.: Immersed boundary methods for fluid interfaces. In: Prosperetti, A., Tryggvasson, G. (eds) Computational Methods for Multiphase Flow, pp. 37–78. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  44. Valvatne P.H., Blunt M.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40, 1–21 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Ramstad
    • 1
  • Nasiru Idowu
    • 1
  • Cyril Nardi
    • 1
  • Pål-Eric Øren
    • 1
  1. 1.Numerical Rocks ASTrondheimNorway

Personalised recommendations