Transport in Porous Media

, Volume 91, Issue 1, pp 281–294 | Cite as

Measurement of Capillary Pressure–Saturation Relationships Under Defined Compression Levels for Gas Diffusion Media of PEM Fuel Cells

  • Stefan Dwenger
  • Gerhart Eigenberger
  • Ulrich Nieken


Measurements of capillary pressure–saturation relationships under defined levels of compression for gas diffusion layers (GDL) of polymer electrolyte membrane fuel cells as thin, mixed-wettable porous media have been carried out in a newly constructed device. This article lines out the construction principle of the cell and the preconditioning procedure of the sample to measure the capillary pressure–saturation relationships under well-defined conditions and loads of compression. Three commercial GDLs (Freudenberg H2315T10A, H2315T10AC1, and SGL Carbon BA24) have been examined and a compression-depending hysteresis of the capillary pressure–saturation relationship has been measured and identified.


Capillary pressure Gas diffusion layer Hysteresis Hydrophobic porous media Polymer electrolyte membrane fuel cell 



Gas diffusion layer


Micro porous layer


Polymer electrolyte membrane fuel cell




Representative elementaryvolume

List of Symbols


Pore diameter


Pressure of wetting phase


Pressure of non-wetting phase


Microscopic capillary pressure


Macroscopic capillary pressure


Lower cycling pressure


Upper cycling pressure



Greek Symbols


phase (w, g)


surface tension


volume of pore space in REV


fluid volume of phase α in REV


contact angle


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta M., Merten C., Eigenberger G., Class H., Helmig R., Thoben B., Müller-Steinhagen H.: Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. J. Power Sources 159, 1123–1141 (2006)CrossRefGoogle Scholar
  2. Bruce W.A., Welge H.J.: Restored state method for determination of oil in place and connate water. Oil Gas J. 46, 223 (1947)Google Scholar
  3. Fairweather J.D., Cheung P., St-Pierre J., Schwartz D.T.: A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers. Electrochem. Commun. 9, 2340–2345 (2007)CrossRefGoogle Scholar
  4. Gostick J.T., Fowler M.W., Ioannidis M.A., Pritzker M.D., Volfkovich Y.M., Sakars A.: Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells. J. Power Sources 156, 375–387 (2006)CrossRefGoogle Scholar
  5. Gostick J.T., Ioannidis M.A., Fowler M.W., Pritzker M.D.: Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources 173, 277–290 (2007)CrossRefGoogle Scholar
  6. Gostick J.T., Ioannidis M.A., Fowler M.W., Pritzker M.D.: Direct measurement of the capillary pressure characteristics of water–air–gas diffusion layer systems for PEM fuel cells. Electrochem. Commun. 10, 1520–1523 (2008)CrossRefGoogle Scholar
  7. Harkness I., Hussain N., Smith L., Sharman J.: The use of novel water porosimeter to predict the water handling behaviour of gas diffusion media used in polymer electrode fuel cells. J. Power Sources 193, 122–129 (2009)CrossRefGoogle Scholar
  8. Helmig R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin, Heidelberg, New York (1997)Google Scholar
  9. Ochs, S.: Development of a multiphase multicomponent model for PEMFC, Technical Report, International Research Training Group NUPUS (Nonlinearities and upscaling in porous media) (2008)Google Scholar
  10. Ostadi H., Rama P., Liu Y., Chen R., Zhang X., Jiang K.: 3d reconstruction of a gas diffusion layer and a microporous layer. J. Membr. Sci. 351, 69–74 (2010)CrossRefGoogle Scholar
  11. Wang C.Y., Cheng P.: Multiphase flow and heat transfer in porous media. Adv. Heat Transf. 30, 93–182 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stefan Dwenger
    • 1
  • Gerhart Eigenberger
    • 2
  • Ulrich Nieken
    • 2
  1. 1.Institute of Chemical Process EngineeringUniversity of StuttgartStuttgartGermany
  2. 2.StuttgartGermany

Personalised recommendations