Transport in Porous Media

, Volume 90, Issue 3, pp 927–947 | Cite as

Operator Splitting Multiscale Finite Volume Element Method for Two-Phase Flow with Capillary Pressure

  • Frederico Furtado
  • Victor Ginting
  • Felipe Pereira
  • Michael Presho
Article

Abstract

A numerical method used for solving a two-phase flow problem as found in typical oil recovery is investigated in the setting of physics-based two-level operator splitting. The governing equations involve an elliptic differential equation coupled with a parabolic convection-dominated equation which poses a severe restriction for obtaining fully implicit numerical solutions. Furthermore, strong heterogeneity of the porous medium over many length scales adds to the complications for effectively solving the system. One viable approach is to split the system into three sub-systems: the elliptic, the hyperbolic, and the parabolic equation, respectively. In doing so, we allow for the use of appropriate numerical discretization for each type of equation and the careful exchange of information between them. We propose to use the multiscale finite volume element method (MsFVEM) for the elliptic and parabolic equations, and a nonoscillatory difference scheme for the hyperbolic equation. Performance of this procedure is confirmed through several numerical experiments.

Keywords

Porous media Two-phase flow Multiscale finite volume element method Operator splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarnes J.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. SIAM Multiscale Model. Simul. 3, 2031–2041 (2004)Google Scholar
  2. Aarnes J., Kippe V., Lie K.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water. Resour. 28, 257–271 (2005)CrossRefGoogle Scholar
  3. Abreu E., Furtado F., Pereira F.: On the numerical simulation of three-phase reservoir transport problems. Transp. Theor. Stat. 33(5–7), 503–526 (2004)CrossRefGoogle Scholar
  4. Abreu E., Douglas J., Furtado F., Marchesin D., Pereira F.: Three-phase immiscible displacement in heterogeneous petroleum reservoirs. Math. Comput. Simul. 73, 2–20 (2006)CrossRefGoogle Scholar
  5. Abreu E., Douglas J., Furtado F., Pereira F.: Operator splitting based on physics for flow in porous media. Int. J. Comput. Sci. 2(3), 315–335 (2008)Google Scholar
  6. Abreu E., Douglas J., Furtado F., Pereira F.: Operator splitting for three-phase flow in heterogeneous porous media. Commun. Comput. Phys. 6(1), 72–84 (2009)CrossRefGoogle Scholar
  7. Arbogast T., Pencheva G., Wheeler M., Yotov I.: A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6, 319–346 (2007)CrossRefGoogle Scholar
  8. Bear J.: Dynamics of Fluids in Porous Media. Dover Publications, Inc., Mineola, NY (1988)Google Scholar
  9. Bentsen R., Anli J.: A new displacement capillary pressure model. J. Can. Petrol. Technol. 15(3), 75–79 (1976)Google Scholar
  10. Borges M., Furtado F., Pereira F., Amaral Souto H.: Scaling analysis for the tracer flow problem in self-similar permeability fields. SIAM Multiscale Model. Simul. 7(3), 1130–1147 (2008)CrossRefGoogle Scholar
  11. Carlson M.: Practical Reservoir Simulation. PennWell Corporation, Tulsa, OK (2003)Google Scholar
  12. Chavent G.: A new formulation of diphasic incompressible flow in porous media. Lect. Notes Math. 503, 258–270 (1976)CrossRefGoogle Scholar
  13. Chavent G., Jaffre J.: Mathematical Models and Finite Elements for Reservoir Simulation. North-Holland, Amsterdam (1986)Google Scholar
  14. Chen Y., Durlofsky L.: Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–185 (2006)CrossRefGoogle Scholar
  15. Chen Y., Durlofsky L., Gerritsen M., Wen X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)CrossRefGoogle Scholar
  16. Chen Z., Ewing R.: Comparison of various formulations of three-phase flow in porous media. J. Comput. Phys. 132, 362–373 (1997)CrossRefGoogle Scholar
  17. Douglas J., Furtado F., Pereira F.: On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs. Comput. Geosci. 1, 155–190 (1997)CrossRefGoogle Scholar
  18. Douglas J., Pereira F., Yeh L.: A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4(1), 1–40 (2000)CrossRefGoogle Scholar
  19. Durlofsky L., Efendiev Y., Ginting V.: An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv. Water Resour. 30(3), 576–588 (2007)CrossRefGoogle Scholar
  20. Efendiev Y., Hou T., Wu X.: Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37, 888–910 (2000)CrossRefGoogle Scholar
  21. Efendiev Y., Ginting V., Hou T., Ewing R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)CrossRefGoogle Scholar
  22. Ewing R.: Aspects of upscaling in simulation of flow in porous media. Adv. Water Resour. 20(5–6), 349–358 (1997)CrossRefGoogle Scholar
  23. Feijóo T., Mazzei L., Quincy J.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)CrossRefGoogle Scholar
  24. Freeze A.: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water. Resour. Res. 11(5), 725–741 (1975)CrossRefGoogle Scholar
  25. Ginting V.: Analysis of two-scale finite volume element method for elliptic problem. J. Numer. Math. 12(2), 119–141 (2004)CrossRefGoogle Scholar
  26. Hilfer R.: Capillary pressure, hysteresis and residual saturation in porous media. Physica A 359, 119–128 (2006)CrossRefGoogle Scholar
  27. Holden L., Nielsen B.: Global upscaling of permeability in heterogeneous reservoirs: the Output Least Squares (OLS) method. Transp. Porous. Med. 40, 115–143 (2000)CrossRefGoogle Scholar
  28. Hou T., Wu X.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)CrossRefGoogle Scholar
  29. Isaacson E., Marchesin D., Plohr B.: Transitional waves for conservation laws. SIAM J. Math. Anal. 21, 837–866 (1990)CrossRefGoogle Scholar
  30. Jenny P., Lee S., Tchelepi H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)CrossRefGoogle Scholar
  31. Kurganov A., Tadmor E.: New high-resolution central schemes for nonlinear conservation laws and convection diffusion equations. J. Comput. Phys. 160, 241–282 (2000)CrossRefGoogle Scholar
  32. Larson M., Målqvist A.: Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 2313–2324 (2007)CrossRefGoogle Scholar
  33. LeVeque R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002)CrossRefGoogle Scholar
  34. Nessyahu N., Tadmor E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)CrossRefGoogle Scholar
  35. Pereira F., Rahunanthan A.: A semi-discrete central scheme for the approximation of two-phase flows in three space dimensions. Math. Comput. Simulat. 81(10), 2296–2306 (2011)CrossRefGoogle Scholar
  36. Thomeer J.: Introduction of a pore geometrical factor defined by the capillary pressure curve. AIME Tech. Note 2057, 73–77 (1960)Google Scholar
  37. Wallstrom T., Hou S., Christie M., Durlofsky L., Sharp D.: Accurate scale up of two phase flow using renormalization fo nonuniform coarsening. Comput. Geosci. 3, 69–87 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Frederico Furtado
    • 1
  • Victor Ginting
    • 1
  • Felipe Pereira
    • 2
  • Michael Presho
    • 3
  1. 1.Department of MathematicsUniversity of WyomingLaramieUSA
  2. 2.Department of Mathematics and School of Energy ResourcesUniversity of WyomingLaramieUSA
  3. 3.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations