Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Modeling of CO2 Leakage up Through an Abandoned Well from Deep Saline Aquifer to Shallow Fresh Groundwaters

  • 636 Accesses

  • 53 Citations

Abstract

This article presents a numerical modeling application using the code TOUGHREACT of a leakage scenario occurring during a CO2 geological storage performed in the Jurassic Dogger formation in the Paris Basin. This geological formation has been intensively used for geothermal purposes and is now under consideration as a site for the French national program of reducing greenhouse gas emissions and CO2 geological storage. Albian sandstone, situated above the Dogger limestone is a major strategic potable water aquifer; the impacts of leaking CO2 due to potential integrity failure have, therefore, to be investigated. The present case–study illustrates both the capacity and the limitations of numerical tools to address such a critical issue. The physical and chemical processes simulated in this study have been restricted to: (i) supercritical CO2 injection and storage within the Dogger reservoir aquifer, (ii) CO2 upwards migration through the leakage zone represented as a 1D vertical porous medium to simulate the cement–rock formation interface in the abandoned well, and (iii) impacts on the Albian aquifer water quality in terms of chemical composition and the mineral phases representative of the porous rock by estimating fluid–rock interactions in both aquifers. Because of CPU time and memory constraints, approximation and simplification regarding the geometry of the geological structure, the mineralogical assemblages and the injection period (up to 5 years) have been applied to the system, resulting in limited analysis of the estimated impacts. The CO2 migration rate and the quantity of CO2 arriving as free gas and dissolving, firstly in the storage water and secondly in the water of the overlying aquifer, are calculated. CO2 dissolution into the Dogger aquifer induces a pH drop from about 7.3 to 4.9 limited by calcite dissolution buffering. Glauconite present in the Albian aquifer also dissolves, causing an increase of the silicon and aluminum in solution and triggering the precipitation of kaolinite and quartz around the intrusion point. A sensitivity analysis of the leakage rate according to the location of the leaky well and the variability of the petro-physical properties of the reservoir, the leaky well zone and the Albian aquifers is also provided.

This is a preview of subscription content, log in to check access.

References

  1. André L., Audigane P., Azaroual M., Menjoz A.: Numerical modelling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Convers. Manag. 48(6), 1782–1797 (2007)

  2. Apps J.A., Zheng L., Zhang Y., Xu T.: Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Transp. Porous Med. 82, 215–246 (2010)

  3. Audigane P., Gaus I., Czernichowski-Lauriol I., Pruess K., Xu T.: Two dimensional reactive transport modelling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am. J. Sci. 307, 974–1008 (2007)

  4. Audigane, P., Chiaberge, Ch., Mathurin, F., Picot-Colbeaux, G., Lions, J.: A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: applications to numerical modeling of CO2 geological storage. Transp. Porous Med. Special Issue, Tough Symposium 2009, this issue (2010)

  5. Bachu S., Bennion B.: Effects of in situ conditions on relative permeability characteristics of CO2–brine systems. J. Environ. Geol. 54(8), 1707–1722 (2007)

  6. Batzle M., Wang Z.: Seismic properties of pore fluids. Geophysics 57, 1396–1408 (1992)

  7. Bear J.: Dynamics of fluids in porous media. American Elsevier, New York (1972)

  8. Bennion, B., Bachu, S.: Relative permeability characteristics for Supercritical CO2 displacing water in a variety of potential sequestration zones in the western Canada sedimentary basin. Paper SPE 95547, presented at the SPE Annual Technical Conference and Exhibition, TX, USA (2005)

  9. Bennion, B., Bachu, S.: Supercritical CO2 and H2S-brine drainage and imbibition relative permeability relationships for intergranular sandstone and carbonate formations. SPE Europec/EAGE Annual Conference and Exhibition, Austria. SPE 99326-MS (2006)

  10. Birkholzer, J., Apps, J.A., Zheng, L., Zhang, Y., Xu, T., Tsang, C.-F.: Research project on CO2 geological storage and groundwater resources: water quality effects caused by CO2 intrusion into shallow groundwater. Lawrence Berkeley National Laboratory Technical Report, LBNL-1251E (2008)

  11. Bradl H.B.: Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277, 1–18 (2004)

  12. Brosse, É., Hasanov, V., Bonijoly, D., Garcia, D.: The PICOREF project : selection of geological sites for pilot CO2 injection and storage in the Paris Basin, 1st French-German Symposium on Geological Storage of CO2, Potsdam, June 21–22, pp. 36–37 (2007)

  13. Carroll S., Hao Y., Aines R.: Transport and detection of carbon dioxide in dilute aquifers. Energy Procedia 1, 2111–2118 (2009)

  14. Celia, M.A., Nordbotten, J.M., Bachu, S., Dobossy, M., Court, B.: Risk of leakage versus depth of injection in geological storage. In: Proceedings of the GHGT-9 Conference, Washington, DC. (2008)

  15. Chiaberge, Ch., Audigane, P.: Manuel d’utilisation des outils de pre et post processing pour la modélisation de stockage géologique de CO2 avec les logiciels TOUGH. Brgm Report RP57457 (2009)

  16. Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. (2009). doi:10.1007/s10596-009-9146-x

  17. Cunningham, J.A., Okwen, R.T., Thomas, M.W., Trotz, M.A., Stewart, M.: Expected CO2 -water-rock interactions and changes in formation porosity in a deep saline aquifer in Florida, United States. American Geophysical Union, 2009 Fall Meeting, San Francisco 12/14/09 (2009)

  18. Duan Z.H., Moller N., Weare J.H.: Molecular dynamics simulation of PVT properties of geological fluids and a equation of state of nonpolar and weakly polar gases up to 2000 K and 20,000 bar. Geochim. Cosmochim. Acta. 59(10), 3839–3845 (1992)

  19. Dzombak D.A., Morel F.M.M.: Surface complexation modeling, pp. 393. Wiley, New York (1990)

  20. Elderling B., Nicholson R.V., Scharer J.M.: A combined kinetic and diffusion model for pyrite oxidation in tailings: a change in controls with time. J. Hydrol. 157, 47–60 (1993)

  21. Forchheimer P.: Wasserbewegung durch Boden. Z. Ver. Dtsch. Ing. 45, 1782–1788 (1901)

  22. Gasda S., Celia M.A.: Upscaling relative permeabilities in a structured porous medium. Adv. Water. Resour. 28(5), 493–506 (2005)

  23. Gasda S., Bachu S., Celia M.A.: Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46, 707–720 (2004). doi:10.1007/s00254-004-1073-5

  24. Gleisner, M., Herbert, R., Frogner Kockum, P.: Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Geochem. Geol. 16–29 (2005)

  25. Grataloup, S., Bonijoly, D., Brosse, E., Dreux, R., Garcia, D., Hasanov, V., Lescanne, M., Renoux, P., Thoraval, A.: A site selection methodology for CO2 underground storage in deep saline aquifers: case of the Paris Basin. Energy procedia. GHGT-9, pp. 2929–2936 (2009)

  26. Guillocheau F., Robin C., Allemand P. et al.: Meso-cenozoic geodynamic evolution of Paris Basin: 3D stratigraphic constraints. Geodyn. Acta 13, 189–246 (2000)

  27. Hepple, R.P., Benson, S.M.: Implication of surface seepage on the effectiveness of geological storage of carbon dioxide as a climate change mitigation strategy. In: Gale, J., Kaya, Y., (eds.) Proceedings of the Sixth International Greenhouse Gas Technologies Conference, vol. I, pp. 261–266. Pergamon, Kyoto, 1–5 Oct 2002 (2003)

  28. Jacquemet N., Le Gallo Y., Estublier A., Lachet V., von Dalwigk I., Yan J., Azaroual M., Audigane P.: CO2 streams containing associated components—a review of the thermodynamic and geochemical properties and assessment of some reactive transport codes. Energy Procedia 1(1), 3739–3746 (2009)

  29. Ketzer, J.M., Iglesias, R., Einlift, S., Dullius, J., Ligabue, R., De Lima, V.: Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the RIO Bonito Formation (Pemrian), Southern Brazil. Appl. Geochem. 760–767 (2009)

  30. Kharaka Y.K., Cole D.R, Thordsen J.J., Kakouros E., Nance H.S.: Gas–water–rock interaction in sedimentary basins; CO2 sequestration in the frio formation, Texas, USA. J. Geochem. Explor. 89(1–3), 183–186 (2006)

  31. Kharaka Y.K., Thordsen J.J., Hovorka S.D., Nance S.H., Cole D.R.: Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Friot-I brine pilot test, Texas, USA. Appl. Geochem. 24(l), 1106–1112 (2009)

  32. Kharaka Y.K., Thordsen J.J., Kakouros E. et al.: Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ. Earth Sci. 60(2), 273–284 (2010)

  33. Knauss K., Wolery T.: Muscovite dissolution kinetics as a function of pH and time at 70° C. Geochem. Cosmochim. Acta 53, 1493–1501 (1989)

  34. Lagneau V., Pipart A., Catalette H.: Reactive transport modelling of CO2 sequestration in deep saline aquifers. Oil Gas Sci. Technol. Rev. IFP 60(2), 231–247 (2005)

  35. Lemoine, P., Humery, R., Soyer, R.: Les forages profonds du Bassin de Paris La nappe artésienne des Sables Verts. Extr. Mém. Mus. Hist. Nat. Tome XI (1939)

  36. Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W.: Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Med. (2008). doi:10.1007/s11242-008-9316-7

  37. Meehan D.N.: a correlation for water compressibility. Pet. Eng. Int. 52(13), 125–126 (1980)

  38. Mégnien, C., Mégnien, L.: Synthèse géologique du Bassin de Paris. Stratigraphie et paléogéographie. Mémoire BRGM no. 101-102-103, Orléans (1980)

  39. Michard G., Bastide J.-P.: Etude géochimique de la nappe du Dogger du Bassin parisien. Geochemistry of the water table in the Dogger of the Paris basin. J. Volcanol. Geotherm. Res. 35, 151–163 (1988)

  40. Nagy, K.L.: Dissolution and Precipitation Kinetics of Sheet Silicates, Chemical Weathering, Rates of Silicate Minerals, vol. 31, pp. 291–351 (1995)

  41. Nordbotten J.M., Celia M.A., Bachu S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40, 10 (2004)

  42. Nordbotten J.M., Celia M.A., Bachu S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous. Med. 58, 339–360 (2005)

  43. Nordbotten J.M., Celia M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)

  44. Nordbotten J.M., Kavetski D., Celia M.A., Bachu S.: Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 743–749 (2009)

  45. Numbere D., Brigham, W.E., Standing, M.B.: Correlations for physical properties of petroleum reservoir brines, PRI Report, Stanford University (1977)

  46. Oldenburg C.M.: Joule-Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Convers. Manag. 48, 1808–1815 (2007)

  47. Oldenburg C.M., Bryant S.L., Nicot J.-Ph.: Certification framework based on effective trapping for geologic carbon sequestration. Int.J. Greenhouse Gas Control 3, 444–457 (2009)

  48. Palandri, J., Kharaka, Y.K.: A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. US Geological Survey Open File Report 2004-1068 (2004)

  49. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259 (1999)

  50. Phillips, S.L., Igbene, A., Fair, J.A., Ozbek, H., Tavana, M.: A technical databook for geothermal energy utilization. Lawrence Berkeley Laboratory Report 12810 (1981)

  51. Pruess, K.: TOUGH2—a general-purpose numerical simulator for multiphase fluid and heat flow: Lawrence Berkeley Laboratory Report LBL-29400, Berkeley (1991)

  52. Pruess K., Garcia J., Kovscek T., Oldenburg C., Rutqvist J., Steefel C., Xu T.: Code inter-comparison builds confidence in numerical simulation models for geologic disposal Of CO2, Conference Information: 6th International Conference on Greenhouse Gas Control Technologies, 1–4 Oct 2002, Kyoto Japan. Energy 29(9–10), 1431–1444 (2004)

  53. Raoult Y., Boulègue J., Lauverjat J., Olive P.: Geochemistry of the Albian aquifer in the Paris Basin area contributes to understanding complex hydrogeological behaviour. C. R. Acad. Sci. IIA 325(6), 419–425 (1997)

  54. Rimstidt J., Vaughan D.: Pyrite oxidation : a state of the art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67(5), 873–880 (2003)

  55. Roegiers J.C.: Well modelling: an overview. Oil Gas Sci. Technol. Rev. IFP 57(5), 569–577 (2002)

  56. Rojas, J., Giot, D., Le Nindre, Y.-M, Criaud, A., Fouillac, C., Lambert, M.: Caractérisation et modélisation du réservoir géothermique du Dogger Bassin Parisien, Rapport Final. BRGM IRG SGN 89 (1989)

  57. Smith E., Lu W., Vengris T., Binkiene R.: Sorption oh heavy metals by Lithuanian glauconite. Water Res. 30, 2883–2892 (1996)

  58. Smyth R.C., Hovorka S.D., Lu J., Romanak K.D., Partin J.W., Wong C.: Assessing risk to fresh water resources from long term CO2 injection—laboratory and field studies. Energy Procedia 1(1), 1957–1964 (2009)

  59. Span R., Wagner W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1596 (1996)

  60. Spycher N., Pruess K., Ennis-King J.: CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100° C and up to 600 bar. Geochim. Cosmochim. Acta 67(16), 3015–3031 (2003). doi:10.1016/S0016-7037(03)00273-4

  61. Spycher N., Pruess K.: CO2–H2 O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100°C and up to 600 bar. Geochim. Cosmochim. Acta 69(13), 3309–3320 (2005). doi:10.1016/j.gca.2005.01.015

  62. Tester J.W., Worley G.W., Robinson B.A., Grisby C.O., Feerer J.L.: Correlating quartz dissolution kinetics in pure water from 25 to 625° C. Geochem. Cosmochim. Acta 58, 2407–2420 (1994)

  63. Vernoux, J.F., Maget, P., Afzali, H., Blanchin, R., Donsimoni, M., Vairon, J.: Synthèse hydrogéologique du Crétacé inférieur du Bassin de Paris, rapport BRGM DSGR/IDF R39702 (1997)

  64. Wang S., Jaffe P.R.: Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energy Convers. Manag. 45, 2833–2848 (2004)

  65. Wei H.F., Ledoux E., de Marsily G.: Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin. J. Hydrol. 120, 341–358 (1990)

  66. Xu T., Pruess K.: Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology. Am. J. Sci. 301, 16–33 (2001)

  67. Xu T., Sonnenthal E., Spycher N.F., Pruess K., Brimhall G., Apps J.A.: Modeling multiphase fluid flow and reactive geochemical transport in variably saturated fractured rocks: 2 Applications to supergene copper enrichment and hydrothermals flows. Am. J. Sci. 301, 34–59 (2001)

  68. Xu T., Apps J.A., Pruess K.: Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep Arenaceous Formations. J. Geophys. Res. 108(B2), 2071 (2003)

  69. Xu T., Apps J.A., Pruess K.: Mineral sequestration in a sandstone-shale system. Chem. Geol. 217, 295–318 (2005)

  70. Zheng, L., Apps, J.A., Zhang, Y., Xu, T., Birkholzer, J.T.: On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage, Chemical Geology, Corrected Proof, 14 Sep 2009. doi:10.1016/j.chemgeo (in press)

Download references

Author information

Correspondence to Pauline Humez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Humez, P., Audigane, P., Lions, J. et al. Modeling of CO2 Leakage up Through an Abandoned Well from Deep Saline Aquifer to Shallow Fresh Groundwaters. Transp Porous Med 90, 153 (2011). https://doi.org/10.1007/s11242-011-9801-2

Download citation

Keywords

  • CO2 geological storage
  • Well leakage
  • Reactive transport modeling
  • Water quality