Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Linear Elastic Wave Propagation in Unsaturated Sands, Silts, Loams and Clays


Due to its propitious material properties sandstone is the most studied porous medium for the investigation of linear wave propagation. However, in practical applications the behavior of other soil types, i.e., especially the three main soil types sand, silt, and clay, are much more important. Therefore, the model for partially saturated soils introduced by Albers (Habilitation Thesis, 2010a) is applied to 11 soil types classified in the German standard DIN 4220 to obtain information on the phase velocities and attenuations of the three longitudinal waves and the shear wave appearing in such media.

This is a preview of subscription content, log in to check access.


  1. Albers B.: Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model. Transp. Porous Mater. 80(1), 173–192 (2009)

  2. Albers, B.: Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Veröffentlichungen des Grundbauinstitutes der Technischen, Universität Berlin, vol. 48. Habilitation thesis, Shaker Verlag, Aachen (2010)

  3. Albers, B.: On a micro–macro transition for a poroelastic three-component model. ZAMM (2010). Early View. doi:10.1002/zamm.201000061.

  4. Albers B., Wilmanski K.: On modeling acoustic waves in saturated poroelastic media. J. Eng. Mech. 131(9), 974–985 (2005)

  5. Anderson A.L., Hampton L.D.: Acoustics of gas-bearing sediments., I. Background, II. Measurements and models. J. Acoust. Soc. Am. 67(6), 1865–1898 (1980) 1890–1903

  6. Berryman J.G., Thigpen L., Chin R.C.Y.: Bulk elastic wave propagation in partially saturated porous solids. J. Acoust. Soc. Am. 84(1), 360–373 (1988)

  7. Biot M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid, I. low frequency range, II. higher frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956) 179–191

  8. Carcione J.M., Gurevich B., Cavallini F.: A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones. Geophys. Prospect. 48, 539–557 (2000)

  9. de la Cruz V., Sahay P.N., Spanos T.J.T.: Thermodynamics of porous media. Proc. Royal Soc. A 443(1917), 247–255 (1993)

  10. DIN 18196: Earthworks and foundations—soil classification for civil engineering processes. DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH (2006) (in German), German title: Erd- und Grundbau—Bodenklassifikation für bautechnische Zwecke

  11. DIN 4220: Pedologic site assessment—Designation, classification and deduction of soil parameters (normative and nominal scaling). DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH (2005) (draft, in German), German title: Bodenkundliche Standortbeurteilung—Kennzeichnung, Klassifizierung und Ableitung von Bodenkennwerten (normative und nominale Skalierungen)

  12. Drew D., Passman S.L.: Theory of Multicomponent Fluids. Springer, New York (1999)

  13. Gebrande, H., Kern, H., Rummel, F.: Elasticity and inelasticity. In: Hellwege K.-H. (ed.) Landolt-Brnstein. Numerical Data and Functional Relationships in Science and Technology, New Series; Group V. Geophysics and Space Research. Vol. 1b: Physical Properties of Rocks. Springer, Berlin, pp. 1–233 (1982)

  14. Geertsma J.: The effect of fluid pressure decline on volumetric changes of porous rocks. Trans. AIME 210, 331–340 (1957)

  15. Girsang, C.H.: A numerical investigation of the seismic response of the aggregate pier foundation system. Master’s thesis, Virginia Polytechnic Institute and State University (2001)

  16. Gray W.: General conservation equations for multi-phase systems: 4. constitutive theory including phase change. Adv. Water Resour. 6(3), 130–140 (1983)

  17. Gudehus G., Gudehus G., Gudehus G.: Einfluss von Ionen und Gasblasen auf die Kollapsneigung feinstkrniger Bden. Geotechnik 25(1), 12–20 (2002) (in German)

  18. Hartge, K.H., Horn, R.: Einführung in die Bodenphysik. Schweizerbart, Stuttgart (1999) (in German)

  19. Klein, G.: Bodendynamik und Erdbeben. In Smoltczyk, U. (ed.) Grundbau-Taschenbuch Teil 1—Geotechnische Grundlagen, vol. 1, Chap. 1.8. Ernst & Sohn (2001) (in German); also available in English: Geotechnical Engineering Handbook, volume 1

  20. Klimentos T., McCann C.: Why is the Biot slow compressional wave not observed in real rocks? Geophysics 53(12), 1605–1609 (1988)

  21. Liu I.-S.: Continuum Mechanics. Springer, Berlin (2002)

  22. Lo W.-C., Sposito G., Majer E.: Immiscible two-phase flows in deformable porous media. Adv. Water Resour. 25, 1105–1117 (2002)

  23. Lo, W.-C., Sposito, G., Majer, E.: Wave propagation through elastic porous media containing two immiscible fluids. Water Resour. Res. 41, W02025 (20 pp) (2005)

  24. Lo W.-C., Yeh C.-L., Tsai C.-T.: Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions. J. Hydrol. 338, 273–284 (2007)

  25. Pavlovic V.D., Velickovic Z.S.: Measurement of the seismic waves propagation velocity in the real medium. Facta Universitatis: Phys. Chem. Technol. 1(5), 63–73 (1998)

  26. Pham N., Carcione J., Helle H., Ursin B.: Wave velocities and attenuation of shaley sandstones as a function of pore pressure and partial saturation. Geophys. Prospect. 50, 615–627 (2002)

  27. Schmidt, H.-H.: Grundlagen der Geotechnik. Teubner, Stuttgart (1996) (in German)

  28. Schultze, E., Muhs, H.: Bodenuntersuchungen für Ingenieurbauten. Springer, Berlin, Göttingen, Heidelberg (1950) (in German)

  29. Studer, J.A., Koller M.G.: Bodendynamik. Springer, Berlin, Heidelberg, New York (1997) (in German)

  30. Truesdell C.A.: A First Course in Rational Continuum Mechanics. The Johns Hopkins University, Baltimore, Maryland (1972)

  31. Truesdell C.A.: Rational Thermodynamics. 2nd edn. Springer, Berlin (1984)

  32. US. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Download via http://soils.usda.gov/technical/classification/taxonomy/

  33. van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

  34. van Genuchten M.T., Nielsen D.R.: On describing and predicting the hydraulic properties of unsaturated soils. Annales Geophysicae 3(5), 615–628 (1985)

  35. van Genuchten M.T., Leij F.J., Yates S.R.: The RETC code for quantifying the hydraulic functions of unsaturated soils. Tech. rep., U.S. Salinity Laboratory, Riverside, CA (1991)

  36. Vanorio T., Prasad M., Nur A.: Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophys. J. Int. 155(1), 319–326 (2003)

  37. von Soos, P.: Eigenschaften von Boden und Fels—ihre Ermittlung im Labor. In: Smoltczyk, U. (ed.) Grundbau-Taschenbuch Teil 1—Geotechnische Grundlagen, vol. 1, chap. 1.4. Ernst & Sohn (2001) (in German); also available in English: Geotechnical Engineering Handbook, volume 1

  38. White J.E.: Underground sound: application of seismic waves, Methods in Geochemistry and Geophysics, vol. 18. Elsevier, Amsterdam, New York (1983)

  39. Wilmanski K.: Tortuosity and objective relative accelerations in the theory of porous materials. Proc. R. Soc. A 461, 1533–1561 (2005)

Download references

Author information

Correspondence to Bettina Albers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Albers, B. Linear Elastic Wave Propagation in Unsaturated Sands, Silts, Loams and Clays. Transp Porous Med 86, 537–557 (2011). https://doi.org/10.1007/s11242-010-9638-0

Download citation


  • Unsaturated soils
  • Wave propagation
  • Porous media
  • Main soil types