Transport in Porous Media

, Volume 86, Issue 1, pp 125–134 | Cite as

A Direct Comparison Between a Slow Pore Scale Drainage Experiment and a 2D Lattice Boltzmann Simulation

  • Olav Aursjø
  • Grunde Løvoll
  • Henning Arendt Knudsen
  • Eirik G. Flekkøy
  • Knut Jørgen Måløy
Article

Abstract

We present here a direct comparison between a slow quasi-two-dimensional pore scale drainage experiment and a two-component 2D lattice Boltzmann simulation. An experimental setup consisting of approximately 10 × 10 pores is mapped onto the 2D lattice Boltzmann model with the aspiration of reproducing the behavior and dynamics of a slow drainage process on a pore scale.

Keywords

Drainage displacement Two-phase flow Porous material Lattice Boltzmann simulation Experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM 1 (AVI 3173 kb)

References

  1. Beresnev, I.A., Li, W., Vigil, R.D.: Condition for break-up of non-wetting fluids in sinusoidally constricted capillary channels. Transp. Porous Media 1–24 (2009)Google Scholar
  2. Dias M.M., Wilkinson D.: Percolation with trapping. J. Phys. A Math. Gen. 19, 3131–3146 (1986)CrossRefGoogle Scholar
  3. Furuberg L., Måløy K.J., Feder J.: Intermittent behavior in slow drainage. Phys. Rev. E 53(1), 966–977 (1996)CrossRefGoogle Scholar
  4. Gunstensen A.K., Rothman D.H., Zaleski S., Zanetti G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320–4327 (1991)CrossRefGoogle Scholar
  5. Haines W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(01), 97–116 (1930)CrossRefGoogle Scholar
  6. Latva-Kokko M., Rothman D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72(4), 46,701 (2005)CrossRefGoogle Scholar
  7. Lenormand R.: Flow through porous media: limits of fractal patterns. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 423(1864), 159–168 (1989)CrossRefGoogle Scholar
  8. Lenormand R., Zarcone C.: Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54(20), 2226–2229 (1985)CrossRefGoogle Scholar
  9. Lenormand R., Touboul E., Zarcone C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)CrossRefGoogle Scholar
  10. Måløy K.J., Furuberg L., Feder J., Jøssang T.: Dynamics of slow drainage in porous media. Phys. Rev. Lett. 68(14), 2161–2164 (1992)CrossRefGoogle Scholar
  11. Meakin P.: Invasion percolation on substrates with correlated disorder. Physica A Stat. Mech. Appl. 173, 305–324 (1991)CrossRefGoogle Scholar
  12. Raiskinmäki P., Shakib-Manesh A., Jäsberg A., Koponen A., Merikoski J., Timonen J.: Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 107(1), 143–158 (2002)CrossRefGoogle Scholar
  13. Rayleigh L.: On the instability of jets. Proc. Lond. Math. Soc. 1(1), 4 (1878)CrossRefGoogle Scholar
  14. Rothman D.H., Zaleski S.: Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge (2004)Google Scholar
  15. Succi S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York, USA (2001)Google Scholar
  16. Sukop M.C., Thorne D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer Verlag, Berlin (2006)Google Scholar
  17. Wilkinson D., Willemsen J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A Math. Gen. 16, 3365–3376 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Olav Aursjø
    • 1
  • Grunde Løvoll
    • 1
    • 2
  • Henning Arendt Knudsen
    • 1
  • Eirik G. Flekkøy
    • 1
  • Knut Jørgen Måløy
    • 1
  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.DNV Research & Innovation, Det Norske Veritas ASHøvikNorway

Personalised recommendations