Advertisement

A Direct Comparison Between a Slow Pore Scale Drainage Experiment and a 2D Lattice Boltzmann Simulation

  • 259 Accesses

  • 12 Citations

Abstract

We present here a direct comparison between a slow quasi-two-dimensional pore scale drainage experiment and a two-component 2D lattice Boltzmann simulation. An experimental setup consisting of approximately 10 × 10 pores is mapped onto the 2D lattice Boltzmann model with the aspiration of reproducing the behavior and dynamics of a slow drainage process on a pore scale.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. Beresnev, I.A., Li, W., Vigil, R.D.: Condition for break-up of non-wetting fluids in sinusoidally constricted capillary channels. Transp. Porous Media 1–24 (2009)

  2. Dias M.M., Wilkinson D.: Percolation with trapping. J. Phys. A Math. Gen. 19, 3131–3146 (1986)

  3. Furuberg L., Måløy K.J., Feder J.: Intermittent behavior in slow drainage. Phys. Rev. E 53(1), 966–977 (1996)

  4. Gunstensen A.K., Rothman D.H., Zaleski S., Zanetti G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320–4327 (1991)

  5. Haines W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(01), 97–116 (1930)

  6. Latva-Kokko M., Rothman D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72(4), 46,701 (2005)

  7. Lenormand R.: Flow through porous media: limits of fractal patterns. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 423(1864), 159–168 (1989)

  8. Lenormand R., Zarcone C.: Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54(20), 2226–2229 (1985)

  9. Lenormand R., Touboul E., Zarcone C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)

  10. Måløy K.J., Furuberg L., Feder J., Jøssang T.: Dynamics of slow drainage in porous media. Phys. Rev. Lett. 68(14), 2161–2164 (1992)

  11. Meakin P.: Invasion percolation on substrates with correlated disorder. Physica A Stat. Mech. Appl. 173, 305–324 (1991)

  12. Raiskinmäki P., Shakib-Manesh A., Jäsberg A., Koponen A., Merikoski J., Timonen J.: Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 107(1), 143–158 (2002)

  13. Rayleigh L.: On the instability of jets. Proc. Lond. Math. Soc. 1(1), 4 (1878)

  14. Rothman D.H., Zaleski S.: Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge (2004)

  15. Succi S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York, USA (2001)

  16. Sukop M.C., Thorne D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer Verlag, Berlin (2006)

  17. Wilkinson D., Willemsen J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A Math. Gen. 16, 3365–3376 (1983)

Download references

Author information

Correspondence to Olav Aursjø.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (AVI 3173 kb)

ESM 1 (AVI 3173 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aursjø, O., Løvoll, G., Knudsen, H.A. et al. A Direct Comparison Between a Slow Pore Scale Drainage Experiment and a 2D Lattice Boltzmann Simulation. Transp Porous Med 86, 125–134 (2011) doi:10.1007/s11242-010-9611-y

Download citation

Keywords

  • Drainage displacement
  • Two-phase flow
  • Porous material
  • Lattice Boltzmann simulation
  • Experiment