Transport in Porous Media

, Volume 85, Issue 2, pp 619–639 | Cite as

Effects of CO2 Compressibility on CO2 Storage in Deep Saline Aquifers

  • Victor Vilarrasa
  • Diogo Bolster
  • Marco Dentz
  • Sebastia Olivella
  • Jesus Carrera


The injection of supercritical CO2 in deep saline aquifers leads to the formation of a CO2 plume that tends to float above the formation brine. As pressure builds up, CO2 properties, i.e. density and viscosity, can vary significantly. Current analytical solutions do not account for CO2 compressibility. In this article, we investigate numerically and analytically the effect of this variability on the position of the interface between the CO2-rich phase and the formation brine. We introduce a correction to account for CO2 compressibility (density variations) and viscosity variations in current analytical solutions. We find that the error in the interface position caused by neglecting CO2 compressibility is relatively small when viscous forces dominate. However, it can become significant when gravity forces dominate, which is likely to occur at late times of injection.


Two phase flow CO2 density Analytical solution Interface Gravity forces 



Rock compressibility


Compressibility of fluid α (α = c, w)


Aquifer thickness


Relative error of the interface position




Hydraulic head of water


Intrinsic permeability

\({k_{{\rm r}_\alpha}}\)

α-Phase relative permeability (α = c, w)


Gravity number

\({P_{{\rm t}_0}}\)

Fluid pressure at the top of the aquifer prior to injection


Fluid pressure for Dentz and Tartakovsky (2009a) approach

\({\overline{P}_{\rm DT}}\)

Vertically averaged fluid pressure for Dentz and Tartakovsky (2009a) approach

\({\overline{P}_{\rm N}}\)

Vertically averaged fluid pressure for Nordbotten et al. (2005) approach


Vertically averaged fluid pressure prior to injection


Fluid pressure of α-phase (α = c, w)


CO2 mass flow rate


CO2 volumetric flow rate


Volumetric flux of α-phase (α = c, w)


Radius of influence


CO2 plume radius at the top of the aquifer for compressible CO2


CO2 plume radius at the top of the aquifer for incompressible CO2


Radial distance


CO2 plume radius at the top of the aquifer


CO2 plume radius at the base of the aquifer


Characteristic length


Injection well radius


Specific storage coefficient

\({S_{{\rm r _w}}}\)

Residual saturation of the formation brine


Saturation of α-phase (α = c, w)




Vertical coordinate


Depth of the top of the aquifer


Depth of the base of the aquifer


CO2 plume volume


Phase index, c CO2 and w brine


CO2 compressibility

\({\epsilon_{\rm v}}\)

Volumetric strain


A dimensionless parameter that measures the relative importance of viscous and gravity forces


Mobility of α-phase (α = c, w)


Viscosity of α-phase (α = c, w)


CO2 density at the reference pressure \({P_{\rm t_0}}\)


Constant for the CO2 density

\({\overline{\rho}_{\rm c}}\)

Mean CO2 density

\({\overline{\rho}_{{\rm c}_{\rm DT}}}\)

Mean CO2 density for Dentz and Tartakovsky (2009a) approach

\({\overline{\rho}_{{\rm c}_{\rm N}}}\)

Mean CO2 density for Nordbotten et al. (2005) approach


Density of α-phase (α = c, w)


Effective stress




Interface position from the bottom of the aquifer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altunin V.V., Sakhabetdinov M.A.: Viscosity of liquid and gaseous carbon dioxide at temperatures 220-1300 K and pressure up to 1200 bar. Teploenergetika, 8, 85–89 (1972)Google Scholar
  2. Angus, A., Armstrong, B., Reuck, K.M. (eds): International thermodynamics tables of the fluid state. Carbon dioxide. International Union of Pure and Applied Chemistry. Pergamon Press, Oxford (1976)Google Scholar
  3. Aziz, K., Settari, A. (eds): Petroleum Reservoir Simulation. 2nd edn. Blitzprint Ltd., Calgary (2002)Google Scholar
  4. Bachu S.: Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ. Geol. 44, 277–289 (2003)CrossRefGoogle Scholar
  5. Bachu S., Adams J.J.: Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 44, 3151–3175 (2003)CrossRefGoogle Scholar
  6. Bear, J. (eds): Dynamics of Fluids in Porous Media. Elsevier, New York (1972)Google Scholar
  7. Bolster, D., Barahona, M., Dentz, M., Fernandez Garcia, D., Sanchez-Vila, X., Trichero, P., Volhondo, C., Tartakovsky, D.M. : Probabilistic risk assessment applied to contamination scenarios in porous media. Water Resour. Res. 45, w06413. (2009a) doi: 10.1029/2008wR007551
  8. Bolster D., Dentz M., Carrera J.: Effective two phase flow in heterogeneous media under temporal pressure fluctuations. Water Resour. Res. 45, W05408 (2009b). doi: 10.1029/2008WR007460 CrossRefGoogle Scholar
  9. Cantucci B., Montegrossi G., Vaselli O., Tassi F., Quattrocchi F., Perkins E.H.: Geochemical modeling of CO2 storage in deep reservoirs: the Weyburn Project (Canada) case study. Chem. Geol. 265, 181–197 (2009)CrossRefGoogle Scholar
  10. Celia M.A., Nordbotten J.M.: Practical modeling approaches for geological storage of carbon dioxide. Ground Water 47(5), 627–638 (2009)CrossRefGoogle Scholar
  11. Chen, Z., Huan, G., Ma, Y. (eds): Computational methods for multiphase flows in porous media. SIAM, Philadelphia (2006)Google Scholar
  12. Cooper H.H., Jacob C.E.: A generalized graphical method for evaluating formation constants and summarizing well field history. Am. Geophys. Union Trans. 27, 526–534 (1946)Google Scholar
  13. Dake, L.P. (eds): Fundamentals of Reservoir Engineering. Elsevier, Oxford (1978)Google Scholar
  14. Dentz M., Tartakovsky D.M.: Abrupt-interface solution for carbon dioxide injection into porous media. Trans. Porous Media 79, 15–27 (2009a)CrossRefGoogle Scholar
  15. Dentz M., Tartakovsky D.M.: Response to “Comments on abrupt-interface solution for carbon dioxide injection into porous media by Dentz and Tartakovsky (2008)” by Lu et al. Trans. Porous Media 79, 39–41 (2009b)CrossRefGoogle Scholar
  16. Ennis-King J., Paterson L.: The role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. J. Soc. Pet. Eng. 10(3), 349–356 (2005)Google Scholar
  17. Garcia, J.E.: Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers. PhD thesis, University of California, Berkeley (2003)Google Scholar
  18. Garcia, J.E., Pruess, K.: Flow Instabilities during injection of CO2 into saline aquifers. Proceedings Tough Symposium 2003, LBNL, Berkeley (2003)Google Scholar
  19. Hesse M.A., Tchelepi H.A., Cantwell B.J., Orr F.M. Jr: Gravity currents in horizontal porous layers: Transition from early to late self-similarity. J. Fluid Mech. 577, 363–383 (2007)CrossRefGoogle Scholar
  20. Hesse M.A., Tchelepi H.A., Orr F.M. Jr: Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60 (2008)CrossRefGoogle Scholar
  21. Hidalgo J.J., Carrera J.: Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 443–454 (2009)CrossRefGoogle Scholar
  22. Hitchon B., Gunter W.D., Gentzis T., Bailey R.T.: Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers. Manag. 40, 825–843 (1999)CrossRefGoogle Scholar
  23. Huppert H.E., Woods A.W.: Gravity-driven flows in porous media. J. Fluid Mech. 292, 55–69 (1995)CrossRefGoogle Scholar
  24. Juanes, R., MacMinn, C.W., Szulczewski, M.L.: The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Trans. Porous Media. doi: 10.1007/s11242-009-9420-3 (2009)
  25. Katz, D.L., Lee, R.L. (eds): Natural Gas Engineering. McGraw-Hill, New York (1990)Google Scholar
  26. Kopp A., Class H., Helmig R.: Investigation on CO2 storage capacity in saline aquifers Part 1. Dimensional analysis of flow processes and reservoir characteristics. J. Greenh. Gas Control 3, 263–276 (2009)CrossRefGoogle Scholar
  27. Korbol R., Kaddour A.: Sleipner vest CO2 disposal—injection of removed CO2 into the Utsira formation. Energy Convers. Manag. 36(6–9), 509–512 (1995)CrossRefGoogle Scholar
  28. Lake, L.W. (eds): Enhanced Oil Recovery. Prentice-Hall, Englewood Cliffs, New Jercey (1989)Google Scholar
  29. Law D.H.S., Bachu S.: Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin. Energy Convers. Manag. 37(6-8), 1167–1174 (1996)CrossRefGoogle Scholar
  30. Lu C., Lee S.-Y., Han W.S., McPherson B.J., Lichtner P.C.: Comments on “abrupt-interface solution for carbon dioxide injection into porous media” by M. Dentz and D. Tartakovsky. Trans. Porous Media 79, 29–37 (2009)CrossRefGoogle Scholar
  31. Lyle S., Huppert H.E., Hallworth M., Bickle M., Chadwick A.: Axisymmetric gravity currents in a porous medium. J Fluid Mech. 543, 293–302 (2005)CrossRefGoogle Scholar
  32. Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W.: Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Trans. Porous Media. doi: 10.1007/s11242-008-9316-7 (2008)
  33. McPherson B.J.O.L., Han W.S., Cole B.S.: Two equations of state assembled for basic analysis of multiphase CO2 flow and in deep sedimentary basin conditions. Comput. Geosci. 34, 427–444 (2008)CrossRefGoogle Scholar
  34. Neuweiller I., Attinger S., Kinzelbach W., King P.: Large scale mixing for immiscible displacement in heterogenous porous media. Trans. Porous Media 51, 287–314 (2003)CrossRefGoogle Scholar
  35. Neuzil C.E.: Groundwater flow in low-permeability environments. Water Resour. Res. 22(8), 1163–1195 (1986)CrossRefGoogle Scholar
  36. Nooner S.L., Eiken O., Hermanrud C., Sasagawa G.S., Stenvold T., Zumberge M.A.: Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. J. Greenh. Gas Control 1, 198–214 (2007)CrossRefGoogle Scholar
  37. Nordbotten J.M., Celia M.A., Bachu S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Trans. Porous Media 58, 339–360 (2005)CrossRefGoogle Scholar
  38. Nordbotten J.M., Kavetski D., Celia M.A., Bachu S.: A semi-analytical model estimating leakage associated with CO2 storage in large-scale multi-layered geological systems with multiple leaky wells. Environ. Sci. Technol. 43(3), 743–749 (2009). doi: 10.1021/es801135v CrossRefGoogle Scholar
  39. Olivella S., Carrera J., Gens A., Alonso E.E.: Non-isothermal multiphase flow of brine and gas through saline media. Trans. Porous Media 15, 271–293 (1994)CrossRefGoogle Scholar
  40. Olivella S., Gens A., Carrera J., Alonso E.E.: Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng. Comput. 13, 87–112 (1996)CrossRefGoogle Scholar
  41. Pruess K., Garcia J.: Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ. Geol. 42, 282–295 (2002)CrossRefGoogle Scholar
  42. Pruess K., Garcia J., Kovscek T., Oldenburg C., Rutqvist J., Steelfel C., Xu T.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29, 1431–1444 (2004)CrossRefGoogle Scholar
  43. Riaz A., Hesse M., Tchelepi H., Orr F.M. Jr: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006)CrossRefGoogle Scholar
  44. Rutqvist J., Birkholzer J., Cappa F., Tsang C.-F.: Estimating maximum sustainable geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag. 48, 1798–1807 (2007)CrossRefGoogle Scholar
  45. Saripalli P., McGrail P.: Semi-analytical approaches to modeling deep well injection of CO2 for geological sequestration. Energy Convers. Manag. 43, 185–198 (2002)CrossRefGoogle Scholar
  46. Sovova H., Prochazka J.: Calculations of compressed carbon dioxide viscosities. Ind. Eng. Chem. Res. 32(12), 3162–3169 (1993)CrossRefGoogle Scholar
  47. Span R., Wagner W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point to 1100 K at pressures up to 88 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1596 (1996)CrossRefGoogle Scholar
  48. Stauffer P.H., Viswanathan H.S., Pawar R.J., Guthrie G.D.: A system model for geologic sequestration of carbon dioxide. Environ. Sci. Technol. 43(3), 565–570 (2009)CrossRefGoogle Scholar
  49. Tartakovsky D.M.: (2007) Probabilistic risk analysis in subsurface hydrology. Geophys. Res. Lett. 34, L05 404Google Scholar
  50. Tchelepi, H.A., Orr, F.M. Jr.: Interaction of viscous fingering, permeability inhomogeneity and gravity segregation in three dimensions. SPE Symposium on Reservoir Simulation, New Orleans, pp. 266–271, (1994)Google Scholar
  51. Thiem, G. (eds): Hydrologische Methode. Leipzig, Gebhardt (1906)Google Scholar
  52. Tsang C.-F., Birkholzer J., Rutqvist J.: A comparative review of hydrologic issues involved in geologic storage of CO2 and injection disposal of liquid waste. Environ. Geol. 54, 1723–1737 (2008)CrossRefGoogle Scholar
  53. van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  54. Vilarrasa, V., Bolster, D., Olivella, S., Carrera, J.: Coupled hydromechanical modelling of CO2 sequestration in deep saline aquifers. Int. J. Greenh. Gas Control (submitted) (2010)Google Scholar
  55. Zhou Q., Birkholzer J., Tsang C.-F., Rutqvist J.: A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. J. Greenh. Gas Control 2, 626–639 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Victor Vilarrasa
    • 1
    • 2
  • Diogo Bolster
    • 2
  • Marco Dentz
    • 1
  • Sebastia Olivella
    • 2
  • Jesus Carrera
    • 1
  1. 1.Institute of Environmental Assessment and Water ResearchGHS, IDAEA, CSICBarcelonaSpain
  2. 2.Department of Geotechnical Engineering and GeosciencesTechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations