Transport in Porous Media

, Volume 83, Issue 1, pp 233–256 | Cite as

An Asymptotic Model of Seismic Reflection from a Permeable Layer

Open Access
Article

Abstract

Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot’s model of poroelasticity. A review of the derivation of the main equations from the Hooke’s law, momentum and mass balance equations, and Darcy’s law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and attribute analysis.

Keywords

Hooke’s law Darcy’s law Poroelasticity Low frequency Permeability Asymptotic analysis Seismic imaging 

References

  1. Alishaev M.G., Mirzadzhanzadeh A.K.: On retardation phenomena in filtration theory. Neft i Gaz 6, 71–74 (1975) (in Russian)Google Scholar
  2. Barenblatt G.I., Entov V.M., Ryzhik V.M.: Theory of Fluid Flows through Natural Rocks. Kluwer, Dordrecht (1990)Google Scholar
  3. Berryman J.G.: Elastic wave propagation in fluid-saturated porous media. J. Acoust. Soc. Am. 69, 416–424 (1981)CrossRefGoogle Scholar
  4. Berryman J.G.: Elastic waves in fluid-saturated porous media. In: Burridge, R., Childress, S., Papanicolau, G. (eds) Macroscopic Properties in Disordered Media. Proceedings of a Conference Held at the Courant Institute June 1–3, 1981, vol. 154 of Lecture Notes in Physics, pp. 38–50. Springer, Berlin (1982)Google Scholar
  5. Berryman J.G.: Origin of Gassmanns equations. Geophysics 64(5), 1627–1629 (1999)CrossRefGoogle Scholar
  6. Berryman J.G., Wang H.F.: Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Mining Sci. 37, 67–78 (2000)CrossRefGoogle Scholar
  7. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956a)CrossRefGoogle Scholar
  8. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956b)CrossRefGoogle Scholar
  9. Biot M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)CrossRefGoogle Scholar
  10. Biot M.A., Willis D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)Google Scholar
  11. Brinkman H.C.: A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1947)CrossRefGoogle Scholar
  12. Brown R.J.S.: Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid-filled porous media. Geophysics 45, 1269–1275 (1980)CrossRefGoogle Scholar
  13. Budiansky B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223–227 (1965)CrossRefGoogle Scholar
  14. Carcione J.M.: Viscoelastic effective rheologies for modelling wave propagation in porous media. Geophys. Prospect. 46(3), 249–270 (1998)Google Scholar
  15. Carcione J.M., Helle H.B., Pham N.H.: White’s model for wave propagation in partially saturated rocks: comparison with poroelastic numerical experiments. Geophysics 68, 1389–1398 (2003)CrossRefGoogle Scholar
  16. Castagna J.P., Sun S., Siegfried R.W.: Instantaneous spectral analysis: detection of low-frequency shadows associated with hydrocarbons. Lead. Edge 22(2), 120–127 (2003)CrossRefGoogle Scholar
  17. Cortis, A.: Dynamic acoustic parameters of porous media. PhD thesis, Technische Universiteit Delft, Delft, The Netherlans, May 2002Google Scholar
  18. Darcy H.: Les Fontaines de la ville de Dijon. Victor Dalmont, Paris (1856)Google Scholar
  19. Deresiewicz H., Rice J.T.: The effect of boundaries on wave propagation in a liquid-filled porous solid: III. Reflection of plane waves at a free plane boundary (general case). Bull. Seismol. Soc. Am. 52(3), 595–625 (1962)Google Scholar
  20. Detournay E., Chang A.H.-D.: Comprehensive Rock Engineering: Principle, Practice and Projects, Vol II, Analysis and Design Methods, chap 5 Fundamentals of Poroelasticity, pp. 113–171. Pergamon Press, Oxford (1993)Google Scholar
  21. Dutta N.C., Ode H.: Seismic reflections from a gas–water contact. Geophysics 48(02), 148–162 (1983)CrossRefGoogle Scholar
  22. Frenkel J.: On the theory of seismic and seismoelectric phenomena in a moist soil. J. Phys. 8(4), 230–241 (1944)Google Scholar
  23. Gassmann F.: Über die Elastizität poröser Medien. Vierteljahrscr. Nat. Ges. Zür. 96, 1–23 (1951)Google Scholar
  24. Geertsma J., Smit D.C.: Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics 26(2), 169–181 (1961)CrossRefGoogle Scholar
  25. Goloshubin, G.M., Bakulin, A.V.: Seismic reflectivity of a thin porous fluid-saturated layer versus frequency. In: 68th SEG Meeting, pp. 976–979, New Orleans (1998)Google Scholar
  26. Goloshubin, G.M., Korneev, V.A.: Seismic low-frequency effects from fluid-saturated reservoir. In: SEG Meeting, Calgary (2000)Google Scholar
  27. Goloshubin, G.M., Silin, D.B.: Using frequency-dependent seismic attributes in imaging of a fractured reservoir. In: SEG Meeting, Houston, TX (2005)Google Scholar
  28. Goloshubin, G.M., Daley, T.M., Korneev, V.A.: Seismic low-frequency effects in gas reservoir monitoring VSP data. In: SEG Meeting, San Antonio, TX (2001)Google Scholar
  29. Goloshubin, G.M., Korneev, V.A., Vingalov, V.M.: Seismic low-frequency effects from oil-saturated reservoir zones. In: SEG Meeting, Salt Lake City, Utah (2002)Google Scholar
  30. Goloshubin G.M., Korneev V.A., Silin D.B., Vingalov V.M., Van Schuyver C.: Reservoir imaging using low frequencies of seismic reflections. Lead. Edge 25, 527–531 (2006)CrossRefGoogle Scholar
  31. Goloshubin G., Silin D., Vingalov V., Takkand G., Latfullin M.: Reservoir permeability from seismic attribute analysis. Lead. Edge 27, 376–381 (2008)CrossRefGoogle Scholar
  32. Gurevich B., Zyrianov V.B., Lopatnikov S.L.: Seismic attenuation in finely layered porous rocks: effects of fluid flow and scattering. Geophysics 62(1), 319–324 (1997)CrossRefGoogle Scholar
  33. Gurevich B., Ciz R., Denneman A.I.M.: Simple expressions for normal incidence reflection coefficients from an interface between fluid-saturated porous materials. Geophysics 69(6), 1372–1377 (2004)CrossRefGoogle Scholar
  34. Hashin Z.: Theory of mechanical behavior of heterogeneous media. Appl. Mech. Rev. 17, 1–9 (1964)Google Scholar
  35. Helle H.B., Pham N.H., Carcione J.M.: Velocity and attenuation in partially saturated rocks: poroelastic numerical experiments. Geophys. Prospect. 51, 551–566 (2003)CrossRefGoogle Scholar
  36. Hilterman, F.J.: Seismic Amplitude Interpretation. Number 4 in Distinguished Instructor Series. SEG/EAGE, Lindseth, RO (2001)Google Scholar
  37. Hubbert M.K.: The theory of ground-water motion. J. Geol. 48, 785–943 (1940)CrossRefGoogle Scholar
  38. Hubbert M.K.: Darcy’s law and the field equations of the flow of underground fluids. Trans. AIME 207(7), 222–239 (1956)Google Scholar
  39. Johnson D., Koplik J., Dashen R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)CrossRefGoogle Scholar
  40. Khristianovich S.A., Kovalenko Y.F.: On elastic drive petroleum reservoir production. Fiz.-Tekhn. Probl. Razrab. Polyezn. Iskop. 1, 18–37 (1991)Google Scholar
  41. Kosachevskii L.I.: On the reflection of sound waves from stratified two-component media. Appl. Math. Mech. 25, 1608–1617 (1961)CrossRefGoogle Scholar
  42. Landau L.D., Lifschitz E.M.: Fluid Mechanics, vol. 6 of Series in Advanced Physics. Addison-Wesley, Reading, MA (1959)Google Scholar
  43. Landau L.D., Lifschitz E.M.: Theory of Elasticity, 3rd edn. Pergamon Press, Oxford, England (1986)Google Scholar
  44. Nikolaevskii V.N.: Geomechanics and Fluidodynamics: With Applications to Reservoir Engineering. Kluwer, Dordrecht (1996)Google Scholar
  45. Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A.: Mechanics of Saturated Porous Media. Nedra, Moscow (1970) (in Russian)Google Scholar
  46. Pelissier, M.A., Hoeber, H., van der Coevering, N., Jones, I.F. (eds.): Classics of Elastic Wave Theory. Number 24 in Geophysics Reprint Series. Society of Exploration Geophysicists, Tulsa, OK (2007)Google Scholar
  47. Pride S.R.: Relationships between seismic and hydrological properties. In: Rubin, Y., Hubbart, S. (eds) Hydrogeophysics, Chap. 9, pp. 253–291. Springer, NY (2005)CrossRefGoogle Scholar
  48. Pride S.R., Berryman J.G.: Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys. Rev. E 68(3), 036603-1–10 (2003a)Google Scholar
  49. Pride, S.R., Berryman, J.G.: Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. Phys. Rev. E 68(3), 036604-1–10 (2003b)Google Scholar
  50. Pride S.R., Garambois S.: Electroseismic wave theory of Frenkel and more recent developments. J. Eng. Mech. 131(9), 898–907 (2005)CrossRefGoogle Scholar
  51. Silin D.B., Korneev V.A., Goloshubin G.M., Patzek T.W.: Low-frequency asymptotic analysis of seismic reflection from a fluid-saturated medium. Transp. Porous Media 62(3), 283–305 (2006)CrossRefGoogle Scholar
  52. Vikhorev, A. A., Ammerman, M., Chesnokov, E.M.: Reflection of elastic waves in the layered Biot medium. In: Abousleiman, Y.N., Cheung, A.H.-D., Ulm, F.-J.(eds.) Poromechanics III Biot Centennial (1905–2005) Proceedings of the 3rd Biot Conference on Poromechanics 24–27 May 2005, Norman, Oklahoma, USA, Taylor & Francis (2005)Google Scholar
  53. Wei, X., Zhang, Y., Cao, L., Wang, Y., Zhang, Y.: The gradient of the amplitude spectrum of seismic data and its application in reservoir prediction. In: 2009 SEG Meeting, pp. 1102–1106, Houston, TX, October (2009)Google Scholar
  54. White J.E.: Underground Sound. Applicatiuon of Seismic Waves. Elsevier, Amsterdam (1983)Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.University of HoustonHoustonUSA

Personalised recommendations