Transport in Porous Media

, Volume 82, Issue 1, pp 19–30 | Cite as

The Footprint of the CO2 Plume during Carbon Dioxide Storage in Saline Aquifers: Storage Efficiency for Capillary Trapping at the Basin Scale

  • Ruben JuanesEmail author
  • Christopher W. MacMinn
  • Michael L. Szulczewski


We study a sharp-interface mathematical model of CO2 migration in deep saline aquifers, which accounts for gravity override, capillary trapping, natural groundwater flow, and the shape of the plume during the injection period. The model leads to a nonlinear advection–diffusion equation, where the diffusive term is due to buoyancy forces, not physical diffusion. For the case of interest in geological CO2 storage, in which the mobility ratio is very unfavorable, the mathematical model can be simplified to a hyperbolic equation. We present a complete analytical solution to the hyperbolic model. The main outcome is a closed-form expression that predicts the ultimate footprint on the CO2 plume, and the time scale required for complete trapping. The capillary trapping coefficient and the mobility ratio between CO2 and brine emerge as the key parameters in the assessment of CO2 storage in saline aquifers. Despite the many approximations, the model captures the essence of the flow dynamics and therefore reflects proper dependencies on the mobility ratio and the capillary trapping coefficient, which are basin-specific. The expressions derived here have applicability to capacity estimates by capillary trapping at the basin scale.


Geologic storage Saline aquifers Gravity currents Capillary trapping Residual trapping Hysteresis Sharp-interface Storage efficiency Capacity estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachu S.: Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ. Geol. 44, 277–289 (2003)CrossRefGoogle Scholar
  2. Bachu S., Gunther W.D., Perkins E.H.: Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Conv. Manag. 35(4), 269–279 (1994)CrossRefGoogle Scholar
  3. Bachu S. et al.: CO2 storage capacity estimation: methodology and gaps. Int. J. Greenhouse Gas Control 1, 430–443 (2007)CrossRefGoogle Scholar
  4. Barenblatt G.I.: Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge Texts in Applied Mathematics, Cambridge University Press, (1996)Google Scholar
  5. Bear, J.: Dynamics of fluids in porous media. Elsevier, New York, reprinted with corrections, Dover, New York, 1988 (1972)Google Scholar
  6. Bennion, D.B., Bachu, S.: Supercritical CO2 and H2S—brine drainage and imbibition relative permeability relationships for intergranular sandstone and carbonate formations. In: SPE Europec/EAGE Annual Conference and Exhibition, Vienna, Austria (SPE 99326) (2006)Google Scholar
  7. Department of Energy NETL: Carbon Sequestration Atlas of the United States and Canada. (2007)
  8. Energy Information Administration: State energy-related carbon dioxide emissions estimates (2008)
  9. Ennis-King J., Paterson L.: Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Soc. Pet. Eng. J. 10(3), 349–356 (2005)Google Scholar
  10. Flett, M., Gurton, R., Taggart, I.: The function of gas–water relative permeability hysteresis in the sequestration of carbon dioxide in saline formations. In: SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia (SPE 88485) (2004)Google Scholar
  11. Gunter W.D., Wiwchar B., Perkins E.H.: Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Miner. Pet 59(1–2), 121–140 (1997)CrossRefGoogle Scholar
  12. Hesse, M.A., Tchelepi, H.A., Orr, F.M. Jr.: Scaling analysis of the migration of CO2 in saline aquifers. In: SPE Annual Technical Conference and Exhibition, San Antonio, TX (SPE 102796) (2006)Google Scholar
  13. Hesse M.A., Tchelepi H.A., Cantwel B.J., Orr F.M. Jr: Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363–383 (2007)CrossRefGoogle Scholar
  14. Hesse M.A., Orr F.M. Jr, Tchelepi H.A.: Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60 (2008)CrossRefGoogle Scholar
  15. Huppert H.E., Woods A.W.: Gravity-driven flows in porous media. J. Fluid Mech. 292, 55–69 (1995)CrossRefGoogle Scholar
  16. IPCC: Special report on carbon dioxide capture and storage. In: Metz, B., et al. (eds.) Cambridge University Press (2005)Google Scholar
  17. Juanes, R., MacMinn, C.W.: Upscaling of capillary trapping under gravity override: application to CO2 sequestration in aquifers. In: SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK (SPE 113496) (2008)Google Scholar
  18. Juanes, R., Spiteri, E.J., Orr, F.M. Jr., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res. 42, W12418 (2006). doi: 10.1029/2005WR004806
  19. Kochina I.N., Mikhailov N.N., Filinov M.V.: Groundwater mound damping. Int. J. Eng. Sci. 21, 413–421 (1983)CrossRefGoogle Scholar
  20. Kumar A., Ozah R., Noh M., Pope G.A., Bryant S., Sepehrnoori K., Lake L.W.: Reservoir simulation of CO2 storage in deep saline aquifers. Soc. Pet. Eng. J. 10(3), 336–348 (2005)Google Scholar
  21. Lax P.D.: Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math. 10, 537–566 (1957)CrossRefGoogle Scholar
  22. Lyle S., Huppert H.E., Hallworth M., Bickle M., Chadwick A.: Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293–302 (2005)CrossRefGoogle Scholar
  23. MacMinn, C.W., Juanes, R.: Integrating CO2 dissolution into analytical models for geological CO2 storage. In: 61st Annual Meeting of the APS Division of Fluid Dynamics, San Antonio, TX (2008a)Google Scholar
  24. MacMinn, C.W., Juanes, R.: Post-injection spreading and trapping of CO2 in saline aquifers. Comput. Geosci. (Submitted) (2008b)Google Scholar
  25. Mo, S., Zweigel, P., Lindeberg, E., Akervoll, I.: Effect of geologic parameters on CO2 storage in deep saline aquifers. In: 14th Europec Biennial Conference, Madrid, Spain (SPE 93952) (2005)Google Scholar
  26. Nicot J.P.: Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int. J. Greenhouse Gas Control 2(4), 582–593 (2008)CrossRefGoogle Scholar
  27. Nordbotten J.M., Celia M.A., Bachu S.: Analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58(3), 339–360 (2005)CrossRefGoogle Scholar
  28. Riaz A., Hesse M., Tchelepi H.A., Orr F.M. Jr: Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006)CrossRefGoogle Scholar
  29. Smoller J.: Shock waves and reaction-diffusion equations. Springer-Verlag, New York (1994)Google Scholar
  30. Szulczewski M.L., Juanes R.: A simple but rigorous model for calculating CO2 storage capacity in deep saline aquifers at the basin scale. Energy Procedia (Proc GHGT-9) 1(1), 3307–3314 (2009). doi: 10.1016/j.egypro.2009.02.117 CrossRefGoogle Scholar
  31. Vella D., Huppert H.E.: Gravity currents in a porous medium at an inclined plane. J. Fluid Mech. 555, 353–362 (2006)CrossRefGoogle Scholar
  32. Yortsos Y.C.: A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18, 107–129 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ruben Juanes
    • 1
    Email author
  • Christopher W. MacMinn
    • 1
  • Michael L. Szulczewski
    • 1
  1. 1.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations