Advertisement

Transport in Porous Media

, Volume 82, Issue 3, pp 507–519 | Cite as

Percolation as a Basic Concept for Macroscopic Capillarity

  • R. HilferEmail author
  • F. Doster
Article

Abstract

The concepts of relative permeability and capillary pressure are crucial for the accepted traditional theory of two phase flow in porous media. Recently, a theoretical approach was introduced that does not require these concepts as input (Hilfer, Physica A, 359:119–128, 2006a; Phys. Rev. E, 73:016307, 2006b). Instead it was based on the concept of hydraulic percolation of fluid phases. This paper presents the first numerical solutions of the coupled nonlinear partial differential equations introduced in Hilfer (Phys. Rev. E, 73:016307, 2006b). Approximate numerical results for saturation profiles in one spatial dimension have been calculated. Long time limits of dynamic time-dependent profiles are compared to stationary solutions of the traditional theory. The initial and boundary conditions are chosen to model the displacement processes that occur when a closed porous column containing two immiscible fluids of different density is raised from a horizontal to a vertical position in a gravitational field. The nature of the displacement process may change locally in space and time between drainage and imbibition. The theory gives local saturations for nonpercolating trapped fluids near the endpoint of the displacement.

Keywords

Capillarity Hysteresis Residual saturation Multiphase flow Porous media Immiscible displacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams A.: The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil left by waterflood. Soc. Pet. Eng. J. 15, 437 (1975)Google Scholar
  2. Ataie-Ashtiani B., Hassanizadeh S., Oung O., Westrate F., Bezuijen A.: Numerical modelling of two-phase flow in a geocentrifuge. Environ. Model. Softw. 18, 231 (2003)CrossRefGoogle Scholar
  3. Avraam D.G., Payatakes A.C.: Generalized relative permeability coefficients during steady-state two-phase flow in porous media, and correlation with the flow mechanisms. Transp. Porous Media 20, 135–168 (1995)CrossRefGoogle Scholar
  4. Avraam D.G., Payatakes A.C.: Flow mechanisms, relative permeabilities and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability. Ind. Eng. Chem. Res. 38, 778–786 (1999)CrossRefGoogle Scholar
  5. Bear J.: Dynamics of Fluids in Porous Media. Elsevier Publishing Co., New York (1972)Google Scholar
  6. Bear J., Braester C., Menier P.: Effective and relative permeabilities of anisotropic porous media. Transp. Porous Media 2, 301 (1987)Google Scholar
  7. Blom J., Zegeling P.: Algorithm 731: a moving-grid interface for systems of one-dimensional time-dependent partial differential equations. ACM Trans. Math. Softw. 20, 194 (1994)CrossRefGoogle Scholar
  8. Blunt M., King M., Scher H.: Simulation and theory of two-phase flow in porous media. Phys. Rev. A 46, 7680 (1992)CrossRefGoogle Scholar
  9. Bryant S., Mellor D., Cade C.: Physically representative network models of transport in porous media. AIChE J. 39, 387 (1993)CrossRefGoogle Scholar
  10. Chorin A.: A numerical method for solving incompressible viscous flow problems. J. Comp. Phys. 2, 12 (1967)CrossRefGoogle Scholar
  11. Collins R.: Flow of Fluids through Porous Materials. Reinhold Publishing Co., New York (1961)Google Scholar
  12. Dam A., Zegeling P.: A robust moving mesh finite volume method applied to 1d hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216, 526 (2006)CrossRefGoogle Scholar
  13. de Wiest R.: Flow Through Porous Media. Academic Press, New York (1969)Google Scholar
  14. Dias M., Payatakes A.: Network models for two-phase flow in porous media I: immiscible microdisplacement of non-wetting fluids. J. Fluid Mech. 164, 305 (1986)CrossRefGoogle Scholar
  15. van Dijke M., Sorbie K.: Pore-scale network model for three-phase flow in mixed-wet porous media. Phys. Rev. E 66, 046301 (2002)CrossRefGoogle Scholar
  16. Doster, F., Zegeling, P., Hilfer, R.: Numerical solutions of a generalized theory for macroscopic capillarity NUPUS, Preprint (2009)Google Scholar
  17. Dullien F.: Porous Media: Fluid Transport and Pore Structure. Academic Press, San Diego (1992)Google Scholar
  18. Fatt I.: The network model of porous media I. Capillary pressure characteristics. AIME Pet. Trans. 207, 144–159 (1956)Google Scholar
  19. Ferer M., Bromhal G., Smith D.: Pore-level modeling of drainage: crossover from invasion percolation fingering to compact flow. Phys. Rev. E 67, 051601 (2003)CrossRefGoogle Scholar
  20. Gardescu I.: Behavior of gas bubbles in capillary spaces. Trans. AIME 136, 351 (1930)Google Scholar
  21. Helmig R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin (1997)Google Scholar
  22. Hidajat, I., Rastogi, A., Singh, M., Mohanty, K.: Transport properties of porous media from thin-sections. Paper SPE69623 presented 2001 at the SPE Latin American and Carribean Petroleum Engineering Conference, Buenos Aires, Argentina (2001)Google Scholar
  23. Hilfer R.: Transport and relaxation phenomena in porous media. Adv. Chem. Phys. XCII, 299–425 (1996)CrossRefGoogle Scholar
  24. Hilfer R.: Macroscopic equations of motion for two phase flow in porous media. Phys. Rev. E 58, 2090 (1998)CrossRefGoogle Scholar
  25. Hilfer R.: Capillary pressure, hysteresis and residual saturation in porous media. Physica A 359, 119–128 (2006a)CrossRefGoogle Scholar
  26. Hilfer R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. E 73, 016307 (2006b)CrossRefGoogle Scholar
  27. Hilfer R.: Macroscopic capillarity without a constitutive capillary pressure function. Physica A 371, 209–225 (2006c)CrossRefGoogle Scholar
  28. Hilfer R.: Modeling and simulation of macrocapillarity. In: Garrido, P., Hurtado, P., Marro, J. (eds) CP1091 Modeling and Simulation of Materials., pp. 141. American Institute of Physics, New York (2009)Google Scholar
  29. Hilfer R., Besserer H.: Macroscopic two phase flow in porous media. Physica B 279, 125 (2000a)CrossRefGoogle Scholar
  30. Hilfer R., Besserer H.: Old problems and new solutions for multiphase flow in porous media. In: Dmitrievsky, A., Panfilov, M. (eds) Porous Media: Physics, Models, Simulation, p 133, World Scientific Publishing Co., Singapore (2000b)Google Scholar
  31. Jamin J.: Memoire sur l’equilibre et le mouvement des liquides dans les corps poreux. Comptes Rendus Academie de Sciences de France 50, 172 (1860)Google Scholar
  32. Jerauld G., Salter S.: The effect of pore structure on hysteresis in relative permeability and capillary pressure: pore level modeling. Trans. Porous Media 5, 103 (1990)CrossRefGoogle Scholar
  33. Marsily G.: Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego (1986)Google Scholar
  34. McKellar M., Wardlaw N.: A method of making two dimensional glass micromodels of pore sytems. J. Cdn. Pet. Tech. 21, 39 (1982)Google Scholar
  35. Øren P., Billiotte J., Pinczewski W.: Mobilization of waterflood residual oil by gas injection for water wet conditions. SPE Form. Eval. 7 (March 1992), 70–78 (1992)Google Scholar
  36. Oxaal U.: Fractal viscous fingering in inhomogeneous porous models. Phys. Rev. A 44, 5038 (1991)CrossRefGoogle Scholar
  37. Oxaal U., Boger F., Feder J., Jøssang T., Meakin P., Aharony A.: Viscous fingering in square lattice models with two types of bonds. Phys. Rev. A 44, 6564 (1991)CrossRefGoogle Scholar
  38. Payatakes A.: Dynamics of oil ganglia during immiscible displacement in water-wet porous media. Ann. Rev. Fluid Mech. 14, 365 (1982)CrossRefGoogle Scholar
  39. Payatakes A., Neira M.: Model of the constricted unit cell type for isotropic granular porous media. AIChE J. 23, 922 (1977)CrossRefGoogle Scholar
  40. Scheidegger A.: The Physics of Flow Through Porous Media. University of Toronto Press, Canada (1957)Google Scholar
  41. Sheta, H.: Simulation von Mehrphasenvorgängen in porösen Medien unter Einbeziehung von Hysterese-Effekten. Ph.D. thesis, Institut für Wasserbau, Universität Stuttgart (1999)Google Scholar
  42. Taber J.: Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. Soc. Pet. Eng. J. 9, 3 (1969)Google Scholar
  43. Wyckoff R., Botset H.: Flow of gas-liquid mixtures through unconsolidated sands. Physics 7, 325 (1936)CrossRefGoogle Scholar
  44. Zegeling P., Blom J.: An evaluation of the gradient weighted moving finite element method in one space dimension. J. Comput. Phys. 103, 422 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.ICP, University of StuttgartStuttgartGermany

Personalised recommendations