Transport in Porous Media

, Volume 78, Issue 3, pp 347–365 | Cite as

Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation

  • Thorsten StoesserEmail author
  • Guillermo Palau Salvador
  • Wolfgang Rodi
  • Panayiotis Diplas


Large Eddy Simulations (LES) are performed for an open channel flow through idealized submerged vegetation with a water depth (h) to plant height (h p) ratio of h/h p = 1.5 according to the experimental configuration of Liu et al. (J Geophys Res Earth Sci, 2008). They used a 1D laser Doppler velocimeter (LDV) to measure longitudinal and vertical velocities as well as turbulence intensities along several verticals in the flow and the data are used for the validation of the present simulations. The code MGLET is used to solve the filtered Navier–Stokes equations on a Cartesian non-uniform grid. In order to represent solid objects in the flow, the immersed boundary method is employed. The computational domain is idealized with a box containing 16 submerged circular cylinders and periodic boundary conditions are applied in both longitudinal and transverse directions. The predicted streamwise as well as vertical mean velocities are in good agreement with the LDV measurements. Furthermore, fairly good agreement is found between calculated and measured streamwise and vertical turbulence intensities. Large-scale flow structures of different shapes are present in the form of vortex rolls above the vegetation tops as well as locally generated trailing and von- Karman-type vortices due to flow separation at the free end and the sides of the cylinders. In this paper, the flow field is analyzed statistically and evidence is provided for the existence of these structures based on the LES.


Flow Turbulence Vegetation Large-Eddy Simulation Mixing layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Choi, S.-U., Kang, H.: Reynolds stress modeling of vegetated open channel flows. In: XXIX IAHR Congress Conference Proceedings, vol. 1, pp. 264–269, Beijing, China, Theme D (2001)Google Scholar
  2. Cui, J., Neary, V.S.: Large eddy simulation (LES) of fully developed flow through vegetation. In: IAHR’s 5th International Conference on Hydroinformatics, Cardiff, UK, 1–5 July 2002Google Scholar
  3. Dunn, C., Lopez, F., Garcia, M.H.: Mean flow and turbulence in a laboratory channel with simulated vegetation. Hydraulic Engineering Series No. 51, UILU-ENG-96-2009, UIUC, Urbana, USA (1996)Google Scholar
  4. Dwyer M.J., Patton E.G., Shaw R.H.: Turbulent kinetic energy budgets from a Large-Eddy Simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 1, 23–44 (1997). doi: 10.1023/A:1000301303543 CrossRefGoogle Scholar
  5. Fairbanks, J.D., Diplas, P.: Turbulence characteristics of flows through partially and fully submerged vegetation. In: Wetlands Engineering and River Restoration Conference, Denver, Colorado, USA, 22–27 March 1998Google Scholar
  6. Finnigan J.: Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571 (2000). doi: 10.1146/annurev.fluid.32.1.519 CrossRefGoogle Scholar
  7. Fischer Antze T., Stoesser T., Bates P.B., Olsen N.R.: 3D numerical modelling of open-channel flow with submerged vegetation. IAHR J. Hydraul. Res. 39, 303–310 (2001)CrossRefGoogle Scholar
  8. Germano M., Piomelli U., Moin P., Cabot W.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids A 3, 1760 (1991). doi: 10.1063/1.857955 CrossRefGoogle Scholar
  9. Ghisalberti M., Nepf H.M.: Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. 107(C2), 3–1311 (2002)CrossRefGoogle Scholar
  10. Ghisalberti M., Nepf H.M.: The structure of the shear layer in flows over rigid and flexible canopies. Environ. Fluid Mech. 6, 277–301 (2006). doi: 10.1007/s10652-006-0002-4 CrossRefGoogle Scholar
  11. Ikeda S., Kanazawa M.: Three-dimensional organized vortices above flexible water plants. J. Hydraul. Eng. 122, 634–640 (1996). doi: 10.1061/(ASCE)0733-9429(1996)122:11(634) CrossRefGoogle Scholar
  12. Kanda M., Hino M.: Organized structures in developing turbulent flow within and above a plant canopy, using a LES. Boundary-Layer Meteorol. 68, 237–257 (1994). doi: 10.1007/BF00705599 CrossRefGoogle Scholar
  13. Kouwen N.M., Unny T.E., Hill H.M.: Flow retardance in vegetated channels. J. Irrig. Drain. Div. 95, 329–342 (1969)Google Scholar
  14. Kouwen N.M., Unny T.E.: Flexible roughness in open channel. J. Hydraul. Div. ASCE 99(5), 713–728 (1973)Google Scholar
  15. Kouwen N., Fathi-Moghadam M.: Friction factors for coniferous trees along rivers. J. Hydraul. Eng. 126(10), 732–740 (2000). doi: 10.1061/(ASCE)0733-9429(2000)126:10(732) CrossRefGoogle Scholar
  16. Liu D., Diplas P., Fairbanks J.D, Hodges C.C. (2000). An experimental study of flow through rigid vegetation. J. Geophys. Res. Earth Sci. 113, 1–16. doi: 10.1029/2008JF001042 Google Scholar
  17. Lopez F., Garcia M.: Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. J. Hydraul. Eng. 127(5), 392–402 (2001). doi: 10.1061/(ASCE)0733-9429(2001)127:5(392) CrossRefGoogle Scholar
  18. Moeng C.H.: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062 (1984). doi: 10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2 CrossRefGoogle Scholar
  19. Naot D., Nezu I., Nakagawa H.: Hydrodynamic behavior of partly vegetated open-channels. ASCE J. Hydraul. Eng. 122(11), 625–633 (1996). doi: 10.1061/(ASCE)0733-9429(1996)122:11(625) CrossRefGoogle Scholar
  20. Neary V.S.: Numerical solution of fully-developed flow with vegetative resistance. J. Eng. Mech. 129(5), 558–563 (2003). doi: 10.1061/(ASCE)0733-9399(2003)129:5(558) CrossRefGoogle Scholar
  21. Nepf H.M.: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. AGU. 35(2), 479–489 (1999). doi: 10.1029/1998WR900069 CrossRefGoogle Scholar
  22. Nepf H.M., Vivoni E.R.: Flow structure in depth-limited, vegetated flow. J. Geophys. Res. 105(C12), 28457–28557 (2000). doi: 10.1029/2000JC900145 CrossRefGoogle Scholar
  23. Nezu I., Onitsuka K.: Turbulent structures in partly vegetated open-channel flows with LDA and PIV measurements. J. Hydraul. Res. 39(6), 629–642 (2001)Google Scholar
  24. Palau, G.P., Stoesser, T., Rummel, A., Rodi, W.: Turbulent shallow flow through emergent vegetation. In: ICEH: International Conference on Ecohydraulics. Tempe, Arizona (2007)Google Scholar
  25. Pasche E., Rouve G.: Overbank flow with vegetatively roughened flood plains. ASCE J. Hydraul. Eng. 111(9), 1262–1278 (1995)CrossRefGoogle Scholar
  26. Raupach M.R., Finnigan J.J., Brunet Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78, 351–382 (1996). doi: 10.1007/BF00120941 CrossRefGoogle Scholar
  27. Shaw R.H., Schumann U.: Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol. 61(1–2), 47–64 (1992). doi: 10.1007/BF02033994 CrossRefGoogle Scholar
  28. Shimizu Y., Tsujimoto T.: Numerical analysis of turbulent open-channel flow over vegetation layer using a k-turbulence model. J. Hydrosci. Hydraul. Eng. JSCE 11(2), 57–67 (1994)Google Scholar
  29. Smagorinsky J.: General circulation experiments with the primitive equations, Part I: The basic experiment. Mon. Weather Rev. 91, 99–152 (1963). doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 CrossRefGoogle Scholar
  30. Stoesser, T., Liang, C., Rodi, W., Jirka, G.H.: Large eddy simulation of fully-developed turbulent flow through submerged vegetation. In: Riverflow (2006)Google Scholar
  31. Stone H.L.: Iterative solution of implicit approximation of multi-dimensional partial differential equations. SIAM J. Numer. Anal. 5(3), 530–558 (1968)CrossRefGoogle Scholar
  32. Stone B.M., Shen H.T.: Hydraulic resistance of flow in channels with cylindrical roughness. J. Hydraul. Eng. 128(5), 500–506 (2002). doi: 10.1061/(ASCE)0733-9429(2002)128:5(500) CrossRefGoogle Scholar
  33. Tremblay, F., Manhart, M., Friedrich, R.: LES of flow around a circular cylinder at a subcritical Reynolds number. In: EUROMECH Colloquium 412, Munich, Germany, 4–6 October 2000Google Scholar
  34. Tsujimoto, T., Kitamura, T.: Velocity profile of flow in vegetated-bed channels. KHL Progressive Report (1990)Google Scholar
  35. Verzicco R., Mohd-Yusof J., Orlandi P., Haworth D.: Large eddy simulation in complex geometric configurations using boundary body forces. AIAA J. 38(3), 427–433 (2000). doi: 10.2514/2.1001 CrossRefGoogle Scholar
  36. Wilson C.A.M.E., Stoesser T., Bates P.D., Batemann-Prinzen A.: Open channel flow through different forms of submerged flexible vegetation. ASCE J. Hydraul. Eng. 129, 847–853 (2003)CrossRefGoogle Scholar
  37. Wu F.C., Shen H.W., Chou Y.J.: Variation of roughness coefficients for unsubmerged and submerged vegetation. ASCE J. Hydraul. Eng. 125(9), 934–942 (2000). doi: 10.1061/(ASCE)0733-9429(1999)125:9(934) CrossRefGoogle Scholar
  38. Zang Y., Street R.L., Koseff J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5, 3186–3196 (1993). doi: 10.1063/1.858675 CrossRefGoogle Scholar
  39. Zdravkovich M.M.: The effects of interference between circular cylinders in cross flow. J. Fluids Struct. 1, 239–261 (1987). doi: 10.1016/S0889-9746(87)90355-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Thorsten Stoesser
    • 1
    Email author
  • Guillermo Palau Salvador
    • 2
  • Wolfgang Rodi
    • 3
  • Panayiotis Diplas
    • 4
  1. 1.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Rural Engineering DepartmentPolytechnic University of ValenciaValenciaSpain
  3. 3.Institute for HydromechanicsKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Department of Civil and Environmental EngineeringVirginia TechBlacksburgUSA

Personalised recommendations