Advertisement

Transport in Porous Media

, Volume 79, Issue 3, pp 335–358 | Cite as

Micromechanics Contribution to Coupled Transport and Mechanical Properties of Fractured Geomaterials

  • E. Lemarchand
  • C. A. Davy
  • L. Dormieux
  • W. Chen
  • F. Skoczylas
Article

Abstract

This article is devoted to the modelling of interdependent mechanical and hydraulic behaviours of geomaterials in presence of a single through-wall fracture by means of micromechanics arguments. Experimental results of fractured concrete samples show non-linear evolutions for both mechanical and hydraulic behaviours with respect to confinement intensity. These non-linear responses are interpreted by the progressive closure of crack-like pores defining the pore volume of the fracture interfacial domain. Disregarding tortuosity effects, we adopt a 2D representation for these cracks. The key role of the fracture initial porosity is also emphasized. It allows to discuss the shape of the distribution of the local apertures distribution function classically used, intercepted here in terms of the distribution of initial crack–aspect ratio within the fracture domain. Application on fractured concrete samples shows the capability of the theoretical model to accurately reproduce the experimental results.

Keywords

Fractures Micromechanics Local cubic law Permeability Roughness Couplings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkowitz B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002)CrossRefGoogle Scholar
  2. Bernabe Y., Brace W.: Permeability porosity pore geometry hot pressed calcite. Mech. Mater. 1(3), 173–183 (1982)CrossRefGoogle Scholar
  3. Billaux D., Feuga B., Gentier S.: Etude théorique et en laboratoire du comportement d’une fracture rocheuse sous contrainte normale. Rev. Fr. Geotech. 26, 21–29 (1984)Google Scholar
  4. Budiansky B., O’Connell R.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81–97 (1976)CrossRefGoogle Scholar
  5. Cook N.: Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int. J. Rock. Mech. Min. Sci. Geomech. Abs. 29, 198–223 (1992)CrossRefGoogle Scholar
  6. Davy C., Skoczylas F., Barnichon J., Lebon P.: Permeability of macro-cracked argilite under confinement: gas and water testing. Phys. Chem. Earth 32, 667–680 (2007)Google Scholar
  7. Deudé V., Dormieux L., Kondo D., Maghous S.: Micromechanical approach to non-linear poroelasticity: application to cracked rocks. J. Eng. Mech. 128, 848–855 (2002)CrossRefGoogle Scholar
  8. Dormieux L., Lemarchand E.: Modélisation macroscopique du transport diffusif: apport des méthodes de changement d’échelle d’espace. Oil & Gas - Revue de l’Institut Francais du Pétrole 55(1), 15–34 (2000)CrossRefGoogle Scholar
  9. Dormieux L., Lemarchand E.: A homogenization approach of advection and diffusion in cracked porous material. J. Eng. Mech. 127(12), 1267–1274 (2001)CrossRefGoogle Scholar
  10. Dormieux L., Kondo D.: Approche micromécanique du couplage perméabilité-endommagement. C. R. Mécanique 332(2), 135–140 (2004)CrossRefGoogle Scholar
  11. Dormieux L., Kondo D., Ulm F.-J.: Microporomechanics. Wiley, London (2006)CrossRefGoogle Scholar
  12. Eshelby J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 235–251 (1957)Google Scholar
  13. Gentier, S.: Morphologie et comportement hydromécanique d’une fracture naturelle dans un granite sous contrainte normale. PhD thesis, Université d’Orléans, France (1986)Google Scholar
  14. Gueguen Y., Palciauskas V.: Introduction à la Physique des Roches. Hermann, Paris (1992)Google Scholar
  15. Horii H., Nemat-Nasser S.: Overall moduli of solids with microcracks: load-induced anisotropy. J. Mech. Phys. Solids 31(2), 155–171 (1983)CrossRefGoogle Scholar
  16. Hsieh P., Neuman S., Stiles G., Simpson E.: Field determination of three dimensional hydraulic conductivity tensor of anisotropic media, 2. methodology and application to fractured rock. Water Resour. Res. 21, 1667–1676 (1985)CrossRefGoogle Scholar
  17. Iwai, K.: Fundamental Studies of Fluid Flow Through a Single Fracture. PhD thesis, University of California, Berkeley, CA (1976)Google Scholar
  18. Jaeger, J., Cook, N., Zimmerman, R.: Fundamentals of Rock Mechanics, 4th edn., volume ISBN: 9780632057597, ISBN10: 0632057599. Blackwell Publishing (2007)Google Scholar
  19. Lemarchand E., Dormieux L., Davy C.A., Skoczylas F.: Analyse micromécanique du couplage perméabilité-contrainte d’une argilite fracturée. Revue Européenne de Génie Civil 11(6), 763–773 (2007)CrossRefGoogle Scholar
  20. Montemagno C., Pyrak-Nolte L.: Porosity of natural fracture networks. Geophys. Res. Lett. 22(11(HS)), 1397–1400 (1995)CrossRefGoogle Scholar
  21. Moreno L., Tsang Y., Tsang C., Neretnieks I.: Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour. Res. 24, 2033–2048 (1988)CrossRefGoogle Scholar
  22. Morlier P.: Description de l’état de fissuration d’une roche à partir d’essais simples et non-destructifs (Description of the state of rock fracturization through simple non-destructive tests). Rock Mech. 3, 125–138 (1971)CrossRefGoogle Scholar
  23. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Kluwer Academic Publishers (1987)Google Scholar
  24. Myer L.: Fractures as collections of cracks. Int. J. Rock. Mech. Min. Sci. 37, 231–243 (2000)CrossRefGoogle Scholar
  25. Neuzil C., Tracy J.: Flow through fractures. Water Resour. Res. 17(1), 191–199 (1981)CrossRefGoogle Scholar
  26. Oron A., Berkowitz B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34(11), 2811–2825 (1998)CrossRefGoogle Scholar
  27. Pyrak-Nolte L., Morris J.: Single fractures under norman stress: the relation between fracture specific stiffness and fluid flow. Int. J. Rock. Mech. Min. Sci. 37, 245–262 (2000)CrossRefGoogle Scholar
  28. Pyrak-Nolte L., Cook N., Nolte D.: Fluid percolation through single fractures. Geophys. Res. Lett. 15(11), 1247–1250 (1988)CrossRefGoogle Scholar
  29. Renshaw C.: On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res. 100(24), 24629–24636 (1995)CrossRefGoogle Scholar
  30. Rutqvist J., Stephansson O.: The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 11, 7–40 (2003)Google Scholar
  31. Sausse J.: Hydromechanical properties and alteration of natural fracture surfaces in the Soultz granite (Bas-Rhin, France). Tectonophysics 348, 169–185 (2002)CrossRefGoogle Scholar
  32. Sisavath S., Al-Yaaruby A., Pain C., Zimmerman R.: A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. Pure Appl. Geophys. 160(5/6), 1009–1022 (2003)CrossRefGoogle Scholar
  33. Snow, D.: A Parallel Plate Model of Fractured Permeable Media. PhD thesis, University of California, Berkeley, CA (1965)Google Scholar
  34. Tsang Y.: The effect of tortuosity on fluid flow through a single fracture. Water Resour. Res. 20(9), 1209–1215 (1984)CrossRefGoogle Scholar
  35. Tsang Y., Tsang C.: Channel model of flow through fractured media. Water Resour. Res. 23(3), 467–479 (1987)CrossRefGoogle Scholar
  36. Tsang Y., Tsang C.: Flow chanelling single fracture as two dimensional strongly heterogeneous permeable medium. Water Resour. Res. 25(9), 2076–2080 (1989)CrossRefGoogle Scholar
  37. Tsang Y., Witherspoon P.: The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size. J. Geophys. Res. 88(B3), 2359–2366 (1983)CrossRefGoogle Scholar
  38. Unger A., Mase C.: Numerical study of the hydromechanical behavior of two rough fracture surfaces in contact. Water Resour. Res. 29, 2101–2114 (1993)CrossRefGoogle Scholar
  39. Viggiani G. et al.: X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression. C. R. Méanique 332, 819–826 (2004)Google Scholar
  40. Walsh J., Brown S., Durham W.: Effective media theory with spatial correlation for flow in fracture. J. Geophys. Res. 102(B10), 22587–22594 (1997)CrossRefGoogle Scholar
  41. Walters D., Wong R.: The hydraulic and mechanical response of an oil sand fracture under varying confining pressure. Can. Geotech. J. 36(2), 262–271 (1999)CrossRefGoogle Scholar
  42. Wanfang Z., Wheater H., Johnston P.: State of the art of modelling two-phase flow in fractured rock. Environ. Geol. 31(3/4), 157–166 (1997)CrossRefGoogle Scholar
  43. Witherspoon P., Wang J., Iwai K., Gale J.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980)CrossRefGoogle Scholar
  44. Zhou, W., Wheater, H.: Effect of aperture variation on two-phase flow in fractures, pp. 173–182. IAHS Publication No. 250 (1995)Google Scholar
  45. Zimmerman R., Bodvarsson G.: Hydraulic conductivity of rock fractures. Transp. Porous Med. 23, 1–30 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. Lemarchand
    • 1
  • C. A. Davy
    • 2
  • L. Dormieux
    • 1
  • W. Chen
    • 2
  • F. Skoczylas
    • 2
  1. 1.Université Paris Est, Laboratoire NavierUMR CNRS LCPC, Ecole des Ponts ParisTechMarne la Vallee Cedex 2France
  2. 2.LML, CNRS UMR 8107, Ecole Centrale de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations