Transport in Porous Media

, Volume 78, Issue 3, pp 403–418 | Cite as

On the Equivalence of the Discontinuous One- and Two-Domain Approaches for the Modeling of Transport Phenomena at a Fluid/Porous Interface

  • D. Jamet
  • M. Chandesris
  • B. Goyeau


In the quest (i) to determine the form of the boundary conditions that must be applied at a fluid/porous interface and (ii) to determine the value of the jump parameters that appear in the expression for these boundary conditions, two different approaches are commonly considered: the so-called one-domain and two-domain approaches. These approaches are commonly thought to be different, and they are thus sometimes compared to each other to determine the value of jump parameters. In this article, we show that the two-domain and discontinuous one-domain approaches are actually strictly equivalent, provided that the latter is mathematically interpreted in the sense of distributions. This equivalence is shown in details for a heat conduction problem and for the more classical Darcy-Brinkman problem. We show in particular that interfacial jumps are introduced in the discontinuous one-domain approach through Dirac delta functions. Numerical issues are then discussed that show that subtle discretization truncation errors give rise to large variations that can be mis-interpreted as the sign of the existence of jump parameters.


Porous media Interface Jump conditions One-domain Two-domain Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beavers G., Joseph D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRefGoogle Scholar
  2. Breugem W.-P., Boersma B.J., Uittenbogaard R.E.: The laminar boundary layer over a permeable wall. Transp. Porous Media 59(3), 267–300 (2005). doi: 10.1007/s11242-004-2557-1 CrossRefGoogle Scholar
  3. Carr M.: Penetrative convection in a superposed porous-medium-fluid layer via internal heating. J. Fluid Mech. 509, 305–329 (2004)CrossRefGoogle Scholar
  4. Carr M., Straughan B.: Penetrative convection in a fluid overlying a porous layer. Adv. Water Res. 26, 263–276 (2003)CrossRefGoogle Scholar
  5. Chandesris, M.: Modélisation des écoulements turbulents dans les milieux poreux et à l’interface avec un milieu libre. Thèse de doctorat, Université Paris VI (2006)Google Scholar
  6. Chandesris M., Jamet D.: Boundary conditions at a fluid–porous interface: An a priori estimation of the stress jump coefficients. Int. J. Heat Mass Transf. 50(17–18), 3422–3436 (2007). doi: 10.1016/j.ijheatmasstransfer.2007.01.053 CrossRefGoogle Scholar
  7. Chandesris, M., Jamet, D.: Jump conditions and surface-excess quantities at a fluid/porous interface: A multi-scale approach. Transp. Porous Media (2009). doi: 10.1007/s11242-008-9302-0
  8. Chen F., Chen C.F.: Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transf. 110, 403–409 (1988)CrossRefGoogle Scholar
  9. Cotta R.M.: Integral Transforms in Computational Heat and Fluid Flow. CRC, Boca Raton, FL (1993)Google Scholar
  10. Deng C., Martinez D.M.: Viscous flow in a channel partially filled with a porous medium and with wall suction. Chem. Eng. Sci. 60(2), 329–336 (2005). doi: 10.1016/j.ces.2004.08.010 CrossRefGoogle Scholar
  11. Fedkiw R., Aslam T., Merriman B., Osher S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (The Ghost Fluid Method). J. Compd. Phys. 152, 457–492 (1999)CrossRefGoogle Scholar
  12. Goyeau B., Lhuillier D., Gobin D., Velarde M.G.: Momentum transport at a fluid–porous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003). doi: 10.1016/S0017-9310(03)00241-2 CrossRefGoogle Scholar
  13. Hirata S.C., Goyeau B., Gobin D.: Stability of natural convection in superposed fluid and porous layer: Influence of the interfacial jump boundary condition. Phys. Fluids 19, 058102 (2007)CrossRefGoogle Scholar
  14. Hirata S.C., Goyeau B., Gobin D., Chandesris M., Jamet D.: Stability of natural convection in superposed fluid and porous layer: Equivalence of the one- and two-domain approaches. Int. J. Heat Mass Transf. 52(1–2), 533–536 (2009). doi: 10.1016/j.ijheatmasstransfer.2008.07.045 CrossRefGoogle Scholar
  15. Kataoka I.: Local instant formulation of two-phase flow. Int. J. Multiph. Flow 12(5), 745–758 (1986)CrossRefGoogle Scholar
  16. Nield D.A.: Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 81, 513–522 (1977)CrossRefGoogle Scholar
  17. Nield D.A.: The boundary correction for the Rayleigh-Darcy problem: Limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)CrossRefGoogle Scholar
  18. Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995). doi: 10.1016/0017-9310(94)00346-W CrossRefGoogle Scholar
  19. Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Hermann (1965)Google Scholar
  20. Silva R.A., de Lemos M.J.S.: Numerical analysis of the stress jump interface condition for laminar flow over a porous layer. Numer. Heat Transf. Part A 43(6), 603–617 (2003a)CrossRefGoogle Scholar
  21. Silva R.A., de Lemos M.J.S.: Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transf. 46, 5113–5121 (2003b)CrossRefGoogle Scholar
  22. Valdès-Parada F.J., Goyeau B., Ochoa-Tapia J.A.: Diffusive mass transfer between a microporous medium and an homogeneous fluid: Jump boundary conditions. Chem. Eng. Sci. 61(5), 1692–1704 (2006). doi: 10.1016/j.ces.2005.10.005 CrossRefGoogle Scholar
  23. Zhao P., Chen C.F.: Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model. Int. J. Heat Mass Transf. 44, 4625–4633 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Département d’Etudes des Réacteurs, CEA/GrenobleCEA, DENGrenoble Cedex 9France
  2. 2.Laboratoire EM2C, Ecole Centrale ParisChâtenay-Malabry Cedex 9France

Personalised recommendations