Transport in Porous Media

, Volume 78, Issue 1, pp 47–75 | Cite as

Robust Multi-D Transport Schemes with Reduced Grid Orientation Effects

Article

Abstract

In this paper we investigate truly multi-D upwind schemes for simulating adverse mobility ratio displacements in porous media. Due to an underlying physical instability at the simulation scale, numerical results are highly sensitive to discretization errors and hence the orientation of the underlying computational grid. We use modified equations analysis to predict preferred flow angles on structured grids for several popular methods and present a conservative, multi-D framework for designing positive upwind schemes for general velocity fields. After placing the common schemes in this framework, we go on to develop a novel scheme with “minimal” constant transverse (cross-wind) diffusion. Results for miscible gas injection into homogeneous and heterogeneous media demonstrate that truly multi-D schemes, and in particular our new scheme, greatly reduce grid orientation effects and numerical biasing as compared to dimensional upwinding.

Keywords

Multi-D transport Grid orientation effect Adverse mobility ratio Miscible gas injection Physical instabilities Interaction regions Positivity Hyperbolic equations Finite volume Finite difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aavatsmark I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3–4), 405–432 (2002)CrossRefGoogle Scholar
  2. Berger M.J., Helzel C., LeVeque R.J.: H-box methods for the approximation of hyperbolic conservation laws on irregular grids. SIAM J. Numer. Anal. 41(3), 893–918 (2003)CrossRefGoogle Scholar
  3. Chen W.H., Durlofsky L.J., Engquist B., Osher S.: Minimization of grid orientation effects through use of higher-order finite difference methods. SPE Adv. Technol. Ser. 1(2), 43–52 (1993)Google Scholar
  4. Colella P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87(1), 171–200 (1990)CrossRefGoogle Scholar
  5. Deconinck, H., Koren, B. (eds.): Euler and Navier-Stokes Solvers Using Multi-Dimensional Upwind Schemes and Multigrid Acceleration. Vieweg (1997)Google Scholar
  6. Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and Users Guide. Oxford Univsity Press (1998)Google Scholar
  7. Heinemann Z.E., Brand C.W., Munka M., Chen Y.M.: Modeling reservoir geometry with irregular grids. SPE Reserv. Eng. 6(2), 225–232 (1991)Google Scholar
  8. Helzel C., Berger M.J., LeVeque R.J.: A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput. 26(3), 785–809 (2005)CrossRefGoogle Scholar
  9. Hurtado, F.S.V., Maliska, C.R., da Silva, A.F.C., Cordazzo, J.: A quadrilateral element-based finite-volume formulation for the simulation of complex reservoirs. In SPE paper 107444-MS presented at the SPE Latin American and Caribbean Petroleum Engineering Conference held in Buenos Aires, Argentina, 15–18 April 2007Google Scholar
  10. Koren B.: Low-diffusion rotated upwind schemes, multigrid and defect corrections for steady, multi-dimensional euler flows. Int. Ser. Numer. Math. 98, 265–276 (1991)Google Scholar
  11. Kozdon J., Gerritsen M., Christie M.: Grid orientation revisited: near-well, early-time effects and solution coupling methods. Trans. Porous Media 73, 255–277 (2008)CrossRefGoogle Scholar
  12. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. 1st edn. Cambridge Univsity Press (2002)Google Scholar
  13. Liu, K., Subramanian, G., Dratler, D.I., Lebel, J., Yerian, J.: A general unstructured grid, EOS based, fully implicit thermal simulator for complex reservoir processes. In SPE paper 106073 presented at the SPE reservoir simulation symposium, Houston, Texas, 26–28 February 2007Google Scholar
  14. Potempa, T.: An improved implementation of the McCracken and Yanosik nine point finite difference procedure. Technical Report 83-14, Rice University (1983)Google Scholar
  15. Pruess, K., Bodvarsson, G.S.: A seven-point finite difference method for improved grid orientation performance in pattern steamfloods. In SPE Paper 12252 presented at the SPE reservoir simulation symposium, San Francisco, California, 15–18 November 1983Google Scholar
  16. Riaz A., Meiburg E.: Linear stability of radial displacements in porous media: Influence of velocity-induced dispersion and concentration-dependent diffusion. Phys. Fluids 16(10), 3592 (2004)CrossRefGoogle Scholar
  17. Robertson G.E., Woo P.T.: Grid-orientation effects and the use of orthogonal curvilinear coordinates in reservoir simulation. SPE J. 18(1), 13–19 (1978)Google Scholar
  18. Roe P.L., Sidilkover D.: Optimum positive linear schemes for advection in two and three dimensions. SIAM J. Numer. Anal. 29(6), 1542–1568 (1992)CrossRefGoogle Scholar
  19. Schneider M.J.: A skewed, positive influence coefficient upwinding procedure for control-volume-based finite-element convection-diffusion computation. Numer. Heat Trans. Part A: Appl. 9(1), 1–26 (1986)Google Scholar
  20. Shubin G.R., Bell J.B.: An analysis of the grid orientation effect in numerical simulation of miscible displacement. Comput. Meth. Appl. Mech. Eng. 47(1–2), 47–71 (1984)CrossRefGoogle Scholar
  21. Tan C.T., Homsy G.M.: Stability of miscible displacements in porous media: radial source flow. Phys. Fluids 30(5), 1239–1245 (1997)CrossRefGoogle Scholar
  22. Todd M.R., ODell P.M., Hiraski G.J.: Methods for increased accuracy in numerical reservoir simulators. SPE J. 12(6), 515–530 (1972)Google Scholar
  23. Van Ransbeeck, P., Hirsch, Ch.: A general analysis of 2d/3d multidimensional upwind convection schemes. In Deconinck, H., Koren, B. (eds.) Euler and Navier-Stokes Solvers Using Multi-Dimensional Upwind Schemes and Multigrid Acceleration. Vieweg (1997)Google Scholar
  24. Wolcott, D.S., Kazemi, H., Dean, R.H.: A practical method for minimizing the grid orientation effect in reservoir simulation. In SPE paper 36723 presented at the SPE annual technical conference and exhibition, Denver, Colorado, 6–9 October 1996Google Scholar
  25. Yanosik J.L., McCracken T.A.: A nine-point, finite difference reservoir simulator for realistic prediction of adverse mobility ratio displacements. SPE J. 19(4), 253–262 (1979)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jeremy Kozdon
    • 1
  • Brad Mallison
    • 2
  • Margot Gerritsen
    • 3
  1. 1.Computational and Mathematical EngineeringStanford UniversityStanfordUSA
  2. 2.Chevron Energy Technology CompanySan RamonUSA
  3. 3.Energy Resources EngineeringStanford UniversityStanfordUSA

Personalised recommendations