Transport in Porous Media

, Volume 74, Issue 1, pp 49–71 | Cite as

Mechanisms of Particle Transport Acceleration in Porous Media

  • M. PanfilovEmail author
  • I. Panfilova
  • Y. Stepanyants


Experimental data show that the groundwater transport of radionuclides in porous media is frequently facilitated when accompanied with colloid particles. This is usually explained by the size exclusion mechanism which implies that the particles move through the largest pores where the flow velocity is higher. We call attention to three other mechanisms which influence the colloid particle motion, while determining both the probable transport facilitation and retardation. First of all, it is shown that the transport facilitation may be significantly reduced and even transformed into a retardation due to the growth of the effective suspension viscosity (a friction-limited facilitation). Secondly, we will show that the transport of particles through the largest pores can be retarded due to a reduced connectivity of the large-pore cluster (a percolation-breakup retardation). Thirdly, we highlight the Fermi mechanism of acceleration known in statistical physics which is based on the elastic collisions between particles. All three effects are analyzed in terms of the velocity enhancement factor, by using statistical models of porous media in the form of a capillary bundle and a 3D capillary network. Optimal and critical regimes of velocity enhancement are quantified. Estimations show that for realistic parameters, the maximal facilitation of colloid transport is close to the experimentally observed data.


Groundwater Particle Transport Radionuclides Colloid Averaging Porous media Collisions Effective viscosity Fermi acceleration Percolation Capillary network Enhancement factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakhvalov, N.S., Panasenko, G.P.: Homogenization: Averaging Processes in Periodic Media. Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
  2. Benamar, A., Wang, H., Ahfir, N., Alem, A., Masséi, N., Dupont, J.-P.: Effets de la vitesse d’écoulement sur le transport et la cinétique de dépôt de particules en suspension en milieu poreux saturé Géosciences de surface (Hydrologie—Hydrogéologie). C.R. Geosci. 337, 497–504 (2005)CrossRefGoogle Scholar
  3. Buddemeier, R.W., Hunt, J.R.: Transport of colloidal contaminants in groundwater: radionuclide migration at the Nevada test site. Appl. Geochem. 3, 535–548 (1988)CrossRefGoogle Scholar
  4. Corapcioglu, M.Y., Jiang, S.: Colloid-facilitated groundwater contaminant transport. Water Resour. Res. 29(7), 2215–2226 (1993)CrossRefGoogle Scholar
  5. Dodds, J.: La chromatographie hydrodynamique. Analysis 10(3), 109–119 (1982)Google Scholar
  6. Entov, V., Feldman, Z., Chen-Sin, E.: Simulation of the capillary imbibition in porous media. Programmation 3, 67–74 (1975) (in Russian)Google Scholar
  7. Gilham, J.R., MacMillan, D.J.: Improved interpretation of the inaccessible pore-volume phenomenon. SPE Formation Evaluation, pp. 442–448 (1987)Google Scholar
  8. Grolimund, D., Borkovec, M., Barmettler, K., Sticher, H.: Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ. Sci. & Technol. 30, 3118–3123 (1996)CrossRefGoogle Scholar
  9. Grolimund, D., Elimelech, M., Borkovec, M., Barmettler, K., Kretzschmar, R., Sticher, H.: Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. & Technol. 32, 3562–3569 (1998)CrossRefGoogle Scholar
  10. Happel, J., Brenner, H.: Low Reynolds Hydrodynamics with Special Applications to Particulate Media. Prentice-Hall (1965)Google Scholar
  11. James, S.C., Chrysikopoulos, C.V.: Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture. J. Colloid Interface Sci. 263, 288–295 (2003)CrossRefGoogle Scholar
  12. Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., Thompson, J.L.: Migration of plutonium in groundwater at the Nevada Test Site. Nature 397, 56–59 (1999)CrossRefGoogle Scholar
  13. Kim, J., Zeh, P., Delakovitz, B.: Chemical interactions of actinide ions with grounwater colloids in Gorleben aquifer systems. Radiochim. Acta 58–59, 147–154 (1992)Google Scholar
  14. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Course of Theoretical Physics, vol. 5, 3rd edn. Pergamon Press, Oxford (1980)Google Scholar
  15. Landau, L.D., Lifshitz, E.M.: Hydrodynamics, Nauka, Moscow (1988) (in Russian). Engl. Transl.: Fluid Mechanics. Pergamon Press, Oxford (1993)Google Scholar
  16. Lieser, K.H., Ament, A., Hill, R., Singh, R.N., Singl, U., Trybush, B.: Colloids in groundwater and their influence on migration of trace elements and radionuclides. Radiochim. Acta 49, 83–100 (1990)Google Scholar
  17. Logan, J.D.: Transport Modeling in Hydrogeo-chemical Systems. Interdisciplinary Applied Mathematics. Springer-Verlag, New-York Inc (2001)Google Scholar
  18. Mantoglou, A., Wilson, J.L.: The turning bands method for simulation of random fields using line generation by a spectral method. Water Resour. Res. 18(5), 1379–1394 (1982)CrossRefGoogle Scholar
  19. Massei, N., Lacrox, M., Wang, H.Q., Dupont, J.-P.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contam. Hydrol. 57, 21–39 (2002)CrossRefGoogle Scholar
  20. McCarthy, J.F., Zachara, J.M.: Subsurface transport of contaminants. Environ. Sci. & Technol. 23, 496–502 (1989)Google Scholar
  21. Moridis, G.J., Hu, Q., Wu, Y.-S., Bodvarsson, G.S.: Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada. J. Contam. Hydrol. 60, 251–286 (2003)CrossRefGoogle Scholar
  22. Oh, W.: Random field simulation and an application of kriging to image thresholding. Dissertation, State University of New York (1998)Google Scholar
  23. Panfilova, I.: Ecoulements diphasiques en milieux poreux: modèle de ménisque. Thèse, Institut National Polytechnique de Lorraine, Nancy (2003)Google Scholar
  24. Panfilova, I., Panfilov, M.: New model of two-phase flow through porous media in a vector field of capillary forces. In: Porous Media: Physics, Models, Simulation (Procs. Int. Conf), pp. 145–165. World Scientific Publishing, Singapore (2000)Google Scholar
  25. Penrose, W.R., Polzer, W.L., Essington, E.N., Nelson, D.M., Orlandini, K.A.: Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ. Sci. & Technol. 24, 228–234 (1990)CrossRefGoogle Scholar
  26. Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. Soc. Petrol. Eng. J. 20, 191–205 (1980)Google Scholar
  27. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A: Physicochem. Eng. Asp. 107, 1–56 (1996)CrossRefGoogle Scholar
  28. Sagdeev, R.Z., Usikov, D.A., Zaslavsky, G.M.: Nonlinear Physics. From the Pendulum to Turbulence and Chaos. Harwood Academic Publishers, NY (1988)Google Scholar
  29. Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119, 71–96 (2006)CrossRefGoogle Scholar
  30. Small, H.: Hydrodynamic chromatography, a technique for size analysis of colloidal particles. J. Colloid Interface Sci. 48, 147–161 (1974)CrossRefGoogle Scholar
  31. Sorbie, K.S.: Polymer-improved Oil Recovery. Blackie, Glasgow (1991)Google Scholar
  32. Sorbie, K.S., Parker, A., Clifford, P.J.: Experimental and theoretical study of polymer flow in porous media. SPE Reservoir Eng. 2, 281–304 (1987)Google Scholar
  33. Teeuw, D., Hesseling, F.Th.: Power-law flow and hydrodynamic behaviour of polymer solutions in porous media. Paper SPE-8982, 73–82 (1980)Google Scholar
  34. Van de Weerd, H., Leijnse, A.: Assesment of the efect of kinetics on colloid facilitated radionuclide transport in porous media. J. Contam. Hydrol. 26, 245–256 (1997)CrossRefGoogle Scholar
  35. Von Gunten, H.R., Waber, U.E., Krabenbuhl, U.: The reactor accident at Chernobyl: a possibility to test colloid-controlled transport of radionuclide in a shallow aquifer. J. Contam. Hydrol. 2, 237–247 (1988)CrossRefGoogle Scholar
  36. Zaslavsky, G.M.: Chaos in Dynamic Systems. Harwood Academic Publishers, NY (1985)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.LEMTA, Nancy-Université, CNRSVandoeuvre-les-NancyFrance
  2. 2.ANSTOSydneyAustralia

Personalised recommendations