Transport in Porous Media

, Volume 74, Issue 3, pp 275–292 | Cite as

Two-Phase Flow in Porous Media with Slip Boundary Condition

  • S. Berg
  • A. W. Cense
  • J. P. Hofman
  • R. M. M. Smits
Article

Abstract

Flow in porous media described by Darcy’s law extended to two-phase flow using the concept of relative permeabilities kr naturally assumes a maximum value of 0 ≤ kr ≤ 1. Reports in literature and our own experimental data show endpoint relative permeabilities kr > 1. In the porous medium, the flux of the non-wetting phase is in many cases about 2-4 times higher when a small amount of the wetting phase is present. Here, we draw an analogy between kr > 1 and a slip-boundary condition for the pore scale flow. We use a model description assuming flow in capillary tubes with a slip boundary condition. This model predicts that the flux increase due to slip depends on the equivalent capillary radius of the flow channels. Our kr data specifically follows this dependence indicating that slip is a plausible explanation for the observation of kr > 1.

Keywords

Two-phase flow Wetting Relative permeability > 1 Slip model Special core analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkafeef S.F., Algharaib M.K. and Alajmi A.F. (2006). Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks. J. Colloid Interface Sci. 298: 13–19 CrossRefGoogle Scholar
  2. Anderson W.G. (1986). Wettability literature survey – part 2: Wettability measurement. J. Pet. Technol. 38(12): 1246–1262 Google Scholar
  3. Anderson W.G. (1987). Wettability literature survey – part 5: The effects of wettability on relative permeability. J. Pet. Technol. 39: 1453 Google Scholar
  4. Arps J.J. and Roberts T.G. (1955). The effect of the relative permeability ratio, the oil gravity and the solution gas-oil ratio on the primary recovery from a depletion type reservoir. Trans. AIME 204: 120 Google Scholar
  5. Ayub M. and Bentsen R.G. (1999). Interfacial viscous coupling: a myth or reality?. J. Pet. Sci. Eng. 23: 13–29 CrossRefGoogle Scholar
  6. Blake, T.D.: Slip between a liquid and a solid. D.M. Tolstoi’s (1952) theory reconsidered. Colloids Surf. 47, 135 (1990)Google Scholar
  7. Blunt M.J. (2001). Flow in porous media pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6: 197–207 CrossRefGoogle Scholar
  8. Brochard F. and de Gennes P.G. (1992). Shear-dependent slippage at a polymer/solid interface. Langmuir 8: 3033–3037 CrossRefGoogle Scholar
  9. Chandler D. (2007). Oil on troubled waters. Nature 445(22): 831–832 CrossRefGoogle Scholar
  10. Choi C.-H., Westin K.J.A. and Breuer S. (2003). Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15(10): 2897–2902 CrossRefGoogle Scholar
  11. Choi C.-H. and Kim C.-J. (2006). Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96: 066001 CrossRefGoogle Scholar
  12. Churaev N.V., Sobolev V.D. and Somov A.N. (1984). Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci. 97: 574–581 CrossRefGoogle Scholar
  13. Cottin-Bizonne C., Cross B., Steinberger A. and Charlaix E. (2005). Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts. Phys. Rev. Lett. 94: 056102 CrossRefGoogle Scholar
  14. Cuiec, L.: Restoration of the natural state of core samples. In: Paper SPE 5634 presented at the 1975 ATCE, Dallas, Sept. 28–Oct. 1 (1975)Google Scholar
  15. Czarnecki J., Radoev B., Schramm L.L. and Slavchev R. (2005). On the nature of athabasca oil sands. Adv. Colloid Interface Sci. 114–115: 53–60 CrossRefGoogle Scholar
  16. Dake, L.P.: Fundamentals of Reservoir Engineering. Elsevier B.V. (1978)Google Scholar
  17. de Gennes P.G. (1985). Wetting: statics and dynamics. Rev. Modern Phys. 57(3): 827–863 CrossRefGoogle Scholar
  18. de Gennes P.G. (2002). On fluid/wall slippage. Langmuir 18: 3413–3414 CrossRefGoogle Scholar
  19. Hirasaki, G.J.: Wettability: fundamentals and surface forces. SPE Formation Evaluation, pp. 217–226, June (1991)Google Scholar
  20. Deen, W.M.: Analysis of Transport Phenomena. Oxford University Press (1998)Google Scholar
  21. Dong M., Dullien F.A.L., Dai L. and Li D. (2006). Immiscible displacement in the interacting capillary bundle model part ii. applications of model and comparison of interacting and non-interacting capillary bundle models. Transp. Porous Med. 63: 289–304 CrossRefGoogle Scholar
  22. Doshi D.A., Watkins E.B., Israelachvili J.N. and Majewski J. (2005). Reduced water density at hydrophobic surfaces: effect of dissolved gases. Proc. Natl. Acad. Sci. 102(27): 9458–9462 CrossRefGoogle Scholar
  23. Drummond C. and Israelachvili J. (2002). Surface forces and wettability. J. Pet. Sci. Eng. 33: 123–133 CrossRefGoogle Scholar
  24. Drummond C. and Israelachvili J. (2004). Fundamental studies of crude oil-surface water interactions and its relationship to reservoir wettability. J. Pet. Sci. Eng. 45: 61–81 CrossRefGoogle Scholar
  25. Dullien F.A.L. (1992). Porous Media – Fluid Transport and Pore Structure, 2nd edn. Academia Press, New York Google Scholar
  26. Ehrlich R. (1993). Viscous coupling in two-phase flow in porous media and its effect on relative permeabilities. Transp. Porous Media 11: 201–218 CrossRefGoogle Scholar
  27. Honarpour, M., Koederitz, L., Harvey, A.H. (eds.) (2000). Relative Permeability of Petroleum Reservoirs. CRC Press, Boca Raton Google Scholar
  28. Horn R., Vinogradova O., Mackay M. and Phan-Thien N. (2000). Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer. J. Chem. Phys. 112: 6424–6433 CrossRefGoogle Scholar
  29. Hui, M.-H., Blunt, M.J.: Pore-scale modeling of three-phase flow and the effects of wettability. volume SPE 59309. Society of Petroleum Engineers (2000)Google Scholar
  30. Jackson M.D., Valvatne P.H. and Blunt M.J. (2003). Prediction of wettability variation within an oil/water transition zone and its impact on production. J. Pet. Sci. Eng. 39: 231–246 CrossRefGoogle Scholar
  31. Karabakal U. and Bagci S. (2004). Determination of wettability and its effect on waterflood performance in limestone medium. Energy Fuels 18: 438–449 CrossRefGoogle Scholar
  32. Kokkedee J.A., Boom W., Frens A.M. and Maas J.G. (1996). Improved special core analysis: scope for a reduced residual oil saturation. Society of Core Analysis Conference Paper. 9601: 1–13 Google Scholar
  33. Lager A., Webb K.J., Black C.J.J., Singleton M. and Sorbie K.S. (2006). Low salinity oil recovery - an experimental investigation. Society of Core Analysists Conference Paper 31: 1–12 Google Scholar
  34. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall (1989)Google Scholar
  35. Lauga E. and Stone H.A. (2003). Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489: 55–77 CrossRefGoogle Scholar
  36. Li H., Pan C. and Miller C.T. (2005). Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys. Rev. E 72: 026705 CrossRefGoogle Scholar
  37. Lord D.L. and Buckley J.S. (2002). An afm study of the morphological features that affect wetting at crude oil-water-mica interfaces. Colloids Surf. A Physicochem. Eng. Asp. 206: 531–546 CrossRefGoogle Scholar
  38. Masalmeh S.K. (2003). The effect of wettability heterogeneity on capillary pressure and relative permeability. J. Pet. Sci. Eng. 39: 399–408 CrossRefGoogle Scholar
  39. McPhee, C.A.: Effects of strong wetting on end-point relative permeability. In Advances in Petrophysics: 5 Years of Dialog, pp. 95–97. The London Petrophysical Society, July (1994)Google Scholar
  40. McPhee C.A. and Arthur K.G. (1994). Relative permeability measurements: an inter-laboratory comparison. SPE 28826: 199–211 Google Scholar
  41. Melrose, J.C.: Interpretation of mixed wettability states in reservoir rock. In: 57th Annual Fall Technical Conference and Exhibition for the Society of Petroleum Engineers of AIME, number SPE 10971 (1982)Google Scholar
  42. Mezger M., Reichert H., Schöder S., Okasinski J., Schröder H., Dosch H., Palms D., Ralston J. and Honkimäki V. (2006). High-resolution in situ X-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface. PNAS 103: 18401–18404 CrossRefGoogle Scholar
  43. Migler K.B., Hervet H. and Leger L. (1993). Slip transition of a polymer melt under shear stress. Phys. Rev. Lett. 70: 286 CrossRefGoogle Scholar
  44. Mikkelsen M. and Scheie A. (1991). Abnormal permeability behavior of a north sea sandstone reservoir. SPE 22600: 145–156 Google Scholar
  45. Miksis S.H. and Davis M.J. (1994). Slip over rough and coated surfaces. J. Fluid Mech. 273: 125–139 CrossRefGoogle Scholar
  46. Morrow, N.R., Melrose, J.C.: Interfacial Phenomena in Petroleum Recovery, Surfactant Science Series vol. 36, chapter Application of Capillary Pressure Measurements to the Determination of Connate Water Saturation, pp. 257–287. Marcel Dekker, New York (1991)Google Scholar
  47. Navier C.L.M.H. (1827). Sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr. 6: 389 Google Scholar
  48. Nguyen V.H., Sheppard A.P., Knackstedt M.A. and Pinczewski W.V. (2006). The effect of displacement rate on imbibition relative permeability and residual saturation. J. Pet. Sci. Eng. 52: 54–70 CrossRefGoogle Scholar
  49. Odeh A.S. (1959). Effect of viscosity ratio on relative permeability. Trans. AIME 216: 346–353 Google Scholar
  50. Patzek T.W. and Kristensen J.G. (2001). Shape factor correlations of hydraulic conductance in noncircular capillaries. J. Colloid Interface Sci. 236: 305–317 CrossRefGoogle Scholar
  51. Priezjev N.V. and Troian S.M. (2004). Molecular origin and dynamic behavior of slip in sheared polymer films. Phys. Rev. Lett. 92(1): 018302 CrossRefGoogle Scholar
  52. Priezjev N.V. and Troian S.M. (2006). Influence of periodic wall roughness on the slip behavior at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J. Fluid Mech. 554: 25 CrossRefGoogle Scholar
  53. Ransohoff T.C. and Radke C.J. (1988). Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore. J. Colloid Interface Sci. 121(2): 392–401 CrossRefGoogle Scholar
  54. Recommended Practices for Core Analysis, volume Recommended Practice 40 of API RP40, 2nd edn. American Petroleum Institute (API) (1998)Google Scholar
  55. Richardson S. (1973). On the no-slip boundary condition. J. Fluid Mech. 59: 707–719 CrossRefGoogle Scholar
  56. Schnell E. (1956). Slippage of water over nonwettable surfaces. J. Appl. Phys. 27: 1149–1152 CrossRefGoogle Scholar
  57. Takamura K. (1982). Microscopic structure of athabasca oil sand. Can. J. Chem. Eng. 60: 538–545 CrossRefGoogle Scholar
  58. Thompson P.A. and Troian S.M. (1997). A general boundary condition for liquid flow at solid surfaces. Nature 389: 360 CrossRefGoogle Scholar
  59. Tiab, D., Donaldson, E.C.: Petrophysics, 2nd edn. Gulf Professional Publishing (2004)Google Scholar
  60. Tolstoi D.M. (1952). Molecular theory for slippage of liquids over solid surfaces. Dokl. Acad. Nauk. SSSR 85: 1089 Google Scholar
  61. Tretheway D.C. and Meinhart C.D. (2002). Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14(3): L9–L12 CrossRefGoogle Scholar
  62. Tyrrell J.W.G. and Attard P. (2001). Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87: 176104 CrossRefGoogle Scholar
  63. Vinogradova O.I. (1995). Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11(6): 2213 CrossRefGoogle Scholar
  64. Vinogradova O.I., Bunkin N.F., Churaev N.V., Kiseleva O.A., Lobeyev A.V. and Ninham B.W. (1995). Effect of salts and dissolved gas on optical cavitation near hydrophobic and hydrophilic surfaces. J. Colloid Interface Sci. 173: 443 CrossRefGoogle Scholar
  65. Watanabe K., Udagawa Y. and Udagawa H. (1999). Drag reduction of newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381: 225–238 CrossRefGoogle Scholar
  66. Worthington, P.F., Charair-Rivière, C. (eds.): Advances in Core Evaluation III: Reservoir Management. Gordon and Breach Science Publishers (1992)Google Scholar
  67. Zhu Y. and Granick S. (2001). Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87: 096105 CrossRefGoogle Scholar
  68. Zhu Y. and Granick S. (2002). Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88: 106102 CrossRefGoogle Scholar

Copyright information

© Shell International Exploration and Production B.V. 2008 2008

Authors and Affiliations

  • S. Berg
    • 1
  • A. W. Cense
    • 1
  • J. P. Hofman
    • 1
  • R. M. M. Smits
    • 1
  1. 1.Shell International Exploration and Production B.V.Rijswijk (Zh)The Netherlands

Personalised recommendations