Transport in Porous Media

, Volume 73, Issue 3, pp 297–318 | Cite as

Viscous Fingering Instability in Porous Media: Effect of Anisotropic Velocity-Dependent Dispersion Tensor

  • Karim Ghesmat
  • Jalel Azaiez


The viscous fingering of miscible flow displacements in a homogeneous porous media is examined to determine the effects of an anisotropic dispersion tensor on the development of the instability. In particular, the role of velocity-dependent transverse and longitudinal dispersions is investigated through linear stability analysis and nonlinear simulations. It is found that an isotropic velocity-dependent dispersion tensor does not affect substantially the development of the instability and effectively has the same effect as molecular diffusion. On the other hand, an anisotropic velocity-dependent dispersion tensor results in different instability characteristics and more intricate finger structures. It is shown that anisotropic dispersion has profound effects on the development of the fingers and on the mechanisms of interactions between neighboring fingers. The development of the new finger structures is explained by examining the velocity field and characterized qualitatively through a spectral analysis of the average concentration and an analysis of the variations of the sweep efficiency and relative contact area.


Viscous fingering Anisotropic velocity-dependent dispersion tensor Porous media Linear stability analysis Nonlinear simulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aris R. (1956). On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. A. 235: 67–77 CrossRefGoogle Scholar
  2. Azaiez J. and Singh B. (2002). Stability of miscible displacements of shear-thinning fluids in a Hele-Shaw cell. Phys Fluids 14: 1557–1571 CrossRefGoogle Scholar
  3. Bear J. (1972). Dynamics of fluids in porous media. Dover, New York Google Scholar
  4. Bear J. and Bachmat Y. (1990). Introduction to modelling of transport phenomena in porous media. Kluwer, Dordrecht Google Scholar
  5. Ben-Jacob E. and Garik P. (1990). The formation of patterns in non-equilibrium growth. Nature 343: 523–530 CrossRefGoogle Scholar
  6. Bensimon D., Kadanoff L.P., Liang S., Shraiman B.I. and Tang C. (1986). Viscous flows in two dimensions. Rev. Mod. Phys. 58: 977–999 CrossRefGoogle Scholar
  7. Brenner H. and Adler P.M. (1982). Dispersion resulting from flow through spatially periodic porous media. II. Surface and intra-particle transport. Phil. Trans. Roy. Soc. London A. 307: 149–200 CrossRefGoogle Scholar
  8. Brenner E., Levine H. and Tu Y. (1991). Non-symmetric Saffman-Taylor fingers. Phys. Fluids A. 3: 529–534 CrossRefGoogle Scholar
  9. Chang S.H. and Slattery J.C. (1988). Stability of vertical miscible displacements with developing density and viscosity gradients. Transp. Porous Med. 3: 277–297 Google Scholar
  10. Chuoke R.L., van Meurs P. and Van der Poel C. (1959). The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Trans. AIME 216: 188–194 Google Scholar
  11. Eidsath A., Carbonell R.G., Withaker S. and Herrmann L.R. (1983). Dispersion in pulsed systems – iii. Comparison between theory and experiments for packed beds. Chem. Eng. Sci. 38: 1803–1816 CrossRefGoogle Scholar
  12. Fried J.J. and Combarnous M.A. (1971). Dispersion in porous media. Adv. Hydrosci. 7: 169–282 Google Scholar
  13. Griffiths A. (1911). On the movement of a coloured index along a capillary tube and its application to the measurement of the circulation of water in a closed circuit. Proc. Phys. Soc. 23: 190–197 Google Scholar
  14. Hill S. (1952). Channeling in packed columns. Chem. Eng. Sci. 1: 247–253 CrossRefGoogle Scholar
  15. Hoagland D.A. and Prud’homme R.K. (1985). Taylor-Aris dispersion arising from flow in a sinusoidal. AIChE J. 31: 236–244 CrossRefGoogle Scholar
  16. Homsy G.M. (1987). Viscous fingering in porous media. Ann. Rev. Fluid Mech. 19: 271–311 CrossRefGoogle Scholar
  17. Islam M.N. and Azaiez J. (2005). Fully implicit finite difference pseudo-spectral method for simulating high mobility-ratio miscible displacements. Int. J. Numer. Meth. Fluids 47: 161–183 CrossRefGoogle Scholar
  18. Kessler D.A., Koplik J. and Levine H. (1988). Pattern selection in fingered growth phenomena. Adv. Phys. 37: 255–339 CrossRefGoogle Scholar
  19. Koch D.L. and Brady J.F. (1985). Dispersion in fixed beds. J. Fluid Mech. 154: 399–427 CrossRefGoogle Scholar
  20. Koch D.L., Cox R.G., Brenner H. and Brady J.F. (1989). Effect of order on dispersion in porous media. J. Fluid Mech. 200: 173–188 CrossRefGoogle Scholar
  21. Legatski M.W. and Katz D.L. (1967). Dispersion coefficients for gases flowing in consolidated porous media. J. Soc. Pet. Eng. 7: 43–53 Google Scholar
  22. Manickam O. and Homsy G.M. (1994). Simulation of viscous fingering in miscible displacements with non-monotonic viscosity profiles. Phys. Fluids 6: 95–107 CrossRefGoogle Scholar
  23. Manickam O. and Homsy G.M. (1995). Fingering instabilities in vertical miscible displacement flows in porous media. J. Fluid Mech. 288: 75–102 CrossRefGoogle Scholar
  24. McCloud K.V. and Maher J.V. (1995). Experimental perturbations to Saffman-Taylor flow. Phys. Rep. 260: 139–185 CrossRefGoogle Scholar
  25. Nittmann J. and Stanley H.E. (1986). Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature 321: 663–668 CrossRefGoogle Scholar
  26. Park C.W. and Homsy G.M. (1985). The instability of long fingers in Hele-Shaw flows. Phys. Fluids 28: 1583–1585 CrossRefGoogle Scholar
  27. Peaceman D.W. and Rachford H. (1962). Numerical calculation multidimensional miscible displacement. Soc. Pet. Eng. J. 2: 327–339 Google Scholar
  28. Perkins T.K. and Johnston O.C. (1963). Review of diffusion and dispersion in porous media. Soc. Pet. Eng. 3: 70–84 Google Scholar
  29. Petitjeans P., Chen C.Y., Meiburg A. and Maxworthy T. (1999). Miscible quarter five-spot displacements in a hele-shaw cell and the role of flow-induced dispersion. Phys. Fluids 11: 1705–1716 CrossRefGoogle Scholar
  30. Riaz A., Pankiewitz E. and Meiburg E. (2004). Linear stability of radial displacements in porous media: influence of velocity-induced dispersion and concentration-dependent diffusion. Phys. Fluids 16(10): 3592–3598 CrossRefGoogle Scholar
  31. Rogerson A. and Meiburg E. (1993). Numerical simulation of miscible displacement processes in porous media flows under gravity. Phys. Fluids A. 5: 2644–2660 CrossRefGoogle Scholar
  32. Ruith M. and Meiburg E. (2000). Miscible rectilinear displacements with gravity override, Part 1, Homogeneous porous medium. J. Fluid Mech. 420: 225–257 CrossRefGoogle Scholar
  33. Saffman P.G. and Taylor G. (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Roy. Soc. Lond. A. 245: 312–329 Google Scholar
  34. Saffman P.G. (1959). Theory of dispersion in porous medium. J. Fluid Mech. 6: 321–349 CrossRefGoogle Scholar
  35. Sahimi M., Hughes B.D., Scriven L.E. and Davis H.T. (1986). Dispersion in flow through porous media – I. One-phase flow. Chem. Eng. Sci. 41: 2103–2122 CrossRefGoogle Scholar
  36. Sahimi M. (1993). Fractal and super-diffusive transport and hydrodynamic dispersion in heterogeneous porous media. Transp. Porous Med. 13: 3–40 CrossRefGoogle Scholar
  37. Sahimi M. (1993). Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata and simulated annealing. Rev. Mod. Phys. 65: 1393–1537 CrossRefGoogle Scholar
  38. Singh B. and Azaiez J. (2001). Numerical simulation of viscous fingering of shear-thinning fluids. Can. J. Chem. Engg. 79: 961–967 CrossRefGoogle Scholar
  39. Slobod R.L. and Caudle B.H. (1952). X-ray shadowgraph studies of areal sweepout efficiencies. Trans. AIME 195: 265–269 Google Scholar
  40. Tan C.T. and Homsy G.M. (1986). Stability of miscible displacements in porous media: rectilinear flow. Phys. Fluids 29: 3549–3556 CrossRefGoogle Scholar
  41. Tan C.T. and Homsy G.M. (1988). Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31: 1330–1338 CrossRefGoogle Scholar
  42. Tan C.T. and Homsy G.M. (1992). Viscous fingering with permeability heterogeneity. Phys. Fluids A. 4: 1099–1101 CrossRefGoogle Scholar
  43. Taylor G.I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. Lond. A. 219: 186–203 CrossRefGoogle Scholar
  44. Taylor G.I. (1954). Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. Roy. Soc. Lond. A. 225: 473–477 Google Scholar
  45. Torelli L. (1972). Computer simulation of the dispersion phenomena occurring during flow through porous media, using a random maze model. Pure Appl. Geophys. 96: 75–88 CrossRefGoogle Scholar
  46. Yortsos Y.C. (1987). Stability of displacement processes in porous media in radial flow geometries. Phys. Fluids 30: 2928–2935 CrossRefGoogle Scholar
  47. Yortsos Y.C. and Zeybek M. (1988). Dispersion driven instability in miscible displacement in porous media. Phys. Fluids 31: 3511–3518 CrossRefGoogle Scholar
  48. Zhao H., Casademunt J., Yeung C. and Maher J.V. (1992). Perturbing Hele-Shaw flow with a small gap gradient. Phys. Rev. A. 45: 2455–2460 CrossRefGoogle Scholar
  49. Zimmerman W.B. and Homsy G.M. (1991). Nonlinear viscous fingering in miscible displacement with anisotropic dispersion. Phys. Fluids A. 3: 1859–1872 CrossRefGoogle Scholar
  50. Zimmerman W.B. and Homsy G.M. (1992). Viscous fingering in miscible displacement: unification of effects of viscosity contrast, anisotropic dispersion and velocity dependence of dispersion on nonlinear finger propagation. Phys. Fluids A. 4: 348–2359 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations