Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A pseudo two-phase model of colloid transport in porous media


In this article we suggest a new phenomenological mathematical model for the groundwater transport of colloid particles through porous media which is able to describe some significant effects experimentally observed but not captured within the framework of the classic approach. Our basic idea is to consider both the pure water and the colloid suspension as two thermodynamic phases. Using the network models of porous media, we simulated numerically the transport process at the pore-scale. By averaging the result derived, we have obtained the relative permeabilities for both phases, the percolation threshold for suspension flow, and the effective suspension viscosity. Due to specific laws of colloid particles repartition between various classes of pores, the relative permeability of suspension happens to be a highly nonlinear function of saturation, very far from the diagonal straight line. This determines a difference between the macroscale phase velocities. The suspension velocity is shown to be higher than that of water in major cases, only if the colloid particles are not too large. The suggested model predicts and describes in a closed form the effect of colloid transport facilitation observed experimentally.

This is a preview of subscription content, log in to check access.


  1. Arnold V.I. (1999). Geometrical Methods in the Theory of Ordinary Differential Equations. MCNMO, BKN NMU, Izhevsk

  2. Buddemeier R.W. and Hunt J.R. (1988). Transport of colloidal contaminants in groundwater: radionuclide migration at the Nevada test site. Appl. Geochem. 3: 535–548

  3. Benamar A., Wang H., Ahfir N., Alem A., Masséi N. and Dupont J.-P. (2005). Effets de la vitesse d’écoulement sur le transport et la cinétique de dépôt de particules en suspension en milieu poreux saturé. Géosciences de surface (Hydrologie – Hydrogologie). C.R. Geosci. 337: 497–504

  4. Corapcioglu M.Y. and Haridas A. (1985). Microbial transport in soils and groundwater: a numerical model. Adv. Water Resour. 8: 188–200

  5. Corapcioglu M.Y. and Jiang S. (1993). Colloid-facilitated groundwater contaminant transport. Water Resour. Res. 29(7): 2215–2226

  6. Corapcioglu M.Y., Jiang S. and Kim S.-H. (1999). Comparison of kinetic and hybrid-equilibrium models simulating colloid-facilitated contaminant transport in porous media. Transport Porous Media 36: 373–390

  7. Dodds J. (1982). La chromatographie hydrodynamique. Analysis 10(3): 109–119

  8. Ferrara A., Marseguerra M. and Zio E. (1999). A comparison between the advection-dispersion and the Kolmogorov–Dmitriev model for groundwater contaminant transport. Ann. Nuclear Energy 26: 1083–1096

  9. Ginn T.R., Wood B.D., Nelson K.E., Scheibe T.D., Murphy E.M. and Clement T.P. (2002). Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25(8-12): 1017–1042

  10. Grolimund D., Elimelech M., Borkovec M., Barmettler K., Kretzschmar R. and Sticher H. (1998). Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32: 3562–3569

  11. Grolimund D., Borkovec M., Barmettler K. and Sticher H. (1996). Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ. Sci. Technol. 30: 3118–3123

  12. Herzig R.J.P., Leclerc D.M. and LeGorf P. (1970). Flow of suspension through porous media. Ind. Eng. Chem. 63(5): 8–35

  13. Iwasaki T. (1937). Some notes on sand filtration. J. Ann. Water Works Ass. 1591(1602): 1591–1602

  14. Kersting A.B., Efurd D.W., Finnegan D.L., Rokop D.J., Smith D.K. and Thompson J.L. (1999). Migration of plutonium in groundwater at the Nevada Test Site. Nature 397: 56–59

  15. Kim, J.I., Zeh, P., Delakovitz, B.: Chemical interactions of actinide ions with groundwater colloids in Gorleben aquifer systems. Radiochim. Acta 58–59, 147–154 (1992)

  16. Kretzschmar R. and Sticher H. (1998). Colloid transport in natural porous media: influence of surface chemistry and flow velocity. Phys. Chem. Earth 23(2): 133–139

  17. Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 65 (1999)

  18. Landau L.D. and Lifshitz E.M. (1993). Hydrodynamics, Nauka, Moscow (in Russian) (Engl. Transl.: Fluid Mechanics). Pergamon Press, Oxford

  19. Logan J.D. (2001). Transport Modeling in Hydrogeo-chemical Systems. Interdisciplinary Applied Mathematics. Springer-Verlag, New-York Inc

  20. Mantoglou A. and Wilson J.L. (1982). The turning bands method for simulation of random fields using line generation by a spectral method. Water Resour. Res. 18(5): 1379–1394

  21. Massei N., Lacrox M., Wang H.Q. and Dupont J.-P. (2002). Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contamin. Hydrol. 57: 21–39

  22. McCarthy J.F. and Zachara J.M. (1989). Subsurface transport of contaminants. Environ. Sci. Technol. 23: 496–502

  23. Mills W.B., Lui S. and Fong F.K. (1991). Literature review and model (COMET) for colloid/metals transport in porous media. Ground Water 29: 199–208

  24. Moridis G.J., Hu Q., Wu Y.-S. and Bodvarsson G.S. (2003). Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada. J. Contamin. Hydrol. 60: 251–286

  25. Muskat M. (1949). Physical Principles of Oil Production. McGraw-Hill Book Company, Inc., New-York, Toronto, London

  26. Panfilov M. (2000). Macroscale Models of Flow through Highly Heterogeneous Porous Media. Kluwer Academic Publishers, Dordrecht

  27. Panfilova, I.: Ecoulements diphasiques en milieux poreux: modèle de ménisque, Thèse, Institut National Polytechnique de Lorraine, Nancy (2003)

  28. Penrose W.R., Polzer W.L., Essington E.N., Nelson D.M. and Orlandini K.A. (1990). Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ. Sci. Technol. 24: 228–234

  29. Ryan J.N. and Elimelech M. (1996). Colloid mobilization and transport in groundwater. Colloids Surf. A: Physicochem. Eng. Aspects 107: 1–56

  30. Santoz A. and Bedrikovetski P. (2006). A stochastic model for particulate suspension flow in porous media. Transport Porous Media 62(1): 23–53

  31. Scheibe T.D. and Wood B.D. (2003). A particle-based model of size or anion axclusion with application to microbial transport in porous media. Water Resour. Res. 39(4): WR001223

  32. Schiffer B., Totsche K.U., Jann S., Kögel-Knabner I., Meyer K. and Meyer Heinrich H.D. (2004). Mobility of the growth promoters trenbolone and melengestrol acetate in agricultural soil: column studies. Sci. Total Environ. 326: 225–237

  33. Sen T.K. and Khilar K.C. (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interf. Sci. 119: 71–96

  34. Sen T.K., Das D., Khilar K.C. and Suraishkumar G.K. (2005). Bacterial transport in porous media: new aspects of the mathematical model. Colloids Surf. A: Physicochem. Eng. Aspects 260(1–3): 53–62

  35. Sharma M.M. and Yortsos Y.C. (1987). Transport of particulate suspension in porous media: model formulation. AICHE J. 33(15): 1616

  36. Tihonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Nauka, Moscow (in Russian) (1977)

  37. von Neumanne, J.: In: Burks, A.W. (ed.) Theory of Self-reproducing Automata. University of Illinois Press, Urbana, IL (1966)

  38. Wang H.Q., Lacroix M., Masséi N. and Dupont J.-P. (2000). Transport des particules en milieu poreux: détermination des paramètres hydrodispersifs et du coefficient de dépôt. Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science 331(2): 97–104

Download references

Author information

Correspondence to M. Panfilov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ilina, T., Panfilov, M., Buès, M. et al. A pseudo two-phase model of colloid transport in porous media. Transp Porous Med 71, 311–329 (2008). https://doi.org/10.1007/s11242-007-9128-1

Download citation


  • Colloids
  • Contaminant
  • Radionuclides
  • Facilitated transport
  • Two-phase flow
  • Suspended particles
  • Relative permeability
  • Size-exclusion
  • Filtration